login
A022189
Gaussian binomial coefficients [ n,6 ] for q = 2.
3
1, 127, 10795, 788035, 53743987, 3548836819, 230674393235, 14877590196755, 955841412523283, 61291693863308051, 3926442969043883795, 251413193158549532435, 16094312257426532376339, 1030159771762835353435923
OFFSET
6,2
LINKS
FORMULA
a(n) = Product_{i=1..6} (2^(n-i+1)-1)/(2^i-1), by definition. - Vincenzo Librandi, Aug 03 2016
MATHEMATICA
Table[QBinomial[n, 6, 2], {n, 6, 24}] (* Vincenzo Librandi, Aug 03 2016 *)
PROG
(Sage) [gaussian_binomial(n, 6, 2) for n in range(6, 20)] # Zerinvary Lajos, May 24 2009
(Magma) r:=6; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 03 2016
(PARI) r=6; q=2; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018
CROSSREFS
Sequence in context: A140477 A110828 A286790 * A121618 A069382 A319366
KEYWORD
nonn
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 03 2016
STATUS
approved