login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A009843 E.g.f. x/cos(x) (odd powers only). 21
1, 3, 25, 427, 12465, 555731, 35135945, 2990414715, 329655706465, 45692713833379, 7777794952988025, 1595024111042171723, 387863354088927172625, 110350957750914345093747, 36315529600705266098580265, 13687860690719716241164167451, 5858139922124796551409938058945 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Expanding x/cosh(x) gives alternated signed values at odd positions.

Related to the formulas sum(k>0,sin(kx)/k^(2n+1))=(-1)^(n+1)/2*x^(2n+1)/(2n+1)!*sum(i=0,2n,(2Pi/x)^i*B(i)*C(2n+1,i)) and if x=Pi/2 sum(k>0,(-1)^(k+1)/k^(2n+1))=(-1)^n*E(2n)*Pi^(2n+1)/2^(2n+2)/(2n)!. - Benoit Cloitre, May 01 2002

LINKS

Table of n, a(n) for n=0..16.

R. P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014.

Peter Luschny, The lost Bernoulli numbers.

Wikipedia, Bernoulli Polynomials

FORMULA

a(n) = (2n+1)*A000364(n) = sum(i=0, 2n, B(i)*C(2n+1, i)*4^i)=(2n+1)*E(2n) where B(i) are the Bernoulli numbers, C(2n, i) the binomial numbers and E(2n) the Euler numbers. - Benoit Cloitre, May 01 2002

Recurrence: a(n) = -(-1)^n*Sum[i=0..n-1, (-1)^i*a(i)*C(2n+1, 2i+1) ]. - Ralf Stephan, Feb 24 2005

a(n) = 4^n |E_{2n}(1/2)+E_{2n}(1)| (2n+1) for n > 0; E_{n}(x) Euler polynomial. - Peter Luschny, Nov 25 2010

a(n) = (2*n+1)! * [x^(2*n+1)] x/cos(x).

E.g.f.: x / cos(x) =x+x^3/Q(0); Q(k)=8k+2-x^2/(1+(2k+1)*(2k+2)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 15 2011

E.g.f.: x + x^3/U(0) where U(k)=  (2*k+1)*(2*k+2) - x^2 + x^2*(2*k+1)*(2*k+2)/U(k+1) ; (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Oct 19 2012

G.f.: x/T(0) where T(k)=  1 + x^2 - x^2*(2*k+2)^2/(1 - x^2*(2*k+2)^2/T(k+1); (continued fraction, 2-step). - Sergei N. Gladkovskii, Nov 10 2012

G.f.: 1/G(0) where G(k) = 1 - x*(8*k^2+8*k+3)-16*x^2*(k+1)^4/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 14 2013

E.g.f.: 2*x/(Q(0) + 1) where Q(k)= 1 - x/(2*k+1)/(2*k+2)/(1 - 1/(1 + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Apr 10 2013

a(n) = (-1)^n*2^(4*n+1)*(2*n+1)*(zeta(-2*n,1/4)-zeta(-2*n,3/4)). - Peter Luschny, Jul 22 2013

Let A(x)=sum(n>=0, a(n)*x^n/(2*n+1)! ), then A(x)=1 + Q(0)*x/(2-x), where Q(k) = 1 - x*(2*k+1)*(2*k+2)/(x*(2*k+1)*(2*k+2) + ((2*k+1)*(2*k+2) - x)*((2*k+3)*(2*k+4) - x)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 13 2013

G.f.: T(0)/(1-3*x), where T(k) = 1 - 16*x^2*(k+1)^4/( 16*x^2*(k+1)^4 - ( 1 - x*(8*k^2+8*k+3))*( 1 - x*(8*k^2+24*k+19))/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 13 2013

G.f.: 1/(T(0), where T(k) = 1 + x - x*(2*k+2)^2/(1 - x*(2*k+2)^2/T(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Dec 01 2013

From Peter Bala, Mar 02 2015: (Start)

a(n) = (-1)^(n+1)*4^(2*n + 1)*B(2*n + 1,1/4), where B(n,x) denotes the n-th Bernoulli polynomial. Cf. A002111, A069852 and A069994.

Conjecturally, a(n) = the unsigned numerator of B(2*n+1,1/4).

G.f. for signed version of sequence: Sum_{n >= 0} { 1/(n + 1) * Sum_{k = 0..n} (-1)^k*binomial(n,k)/( (1 - (4*k + 1)*x)*(1 - (4*k + 3)*x) ) } = 1 - 3*x^2 + 25*x^4 - 427*x^6 + .... (End)

a(n) ~ (2*n+1)! * 2^(2*n+2)/Pi^(2*n+1). - Vaclav Kotesovec, Jul 04 2016

EXAMPLE

x/cos(x) = x + 1/2*x^3 + 5/24*x^5 + 61/720*x^7 + 277/8064*x^9 + ...

MAPLE

seq((2*i+1)!*coeff(series(x/cos(x), x, 32), x, 2*i+1), i=0..13);

A009843 := n -> (-1)^n*(2*n+1)*euler(2*n): # Peter Luschny

MATHEMATICA

c = CoefficientList[Series[1/MittagLefflerE[2, z^2], {z, 0, 40}], z]; Table[(-1)^n* Factorial[2*n+1]*c[[2*n+1]], {n, 0, 16}] (* Peter Luschny, Jul 03 2016 *)

PROG

(PARI) for(n=0, 25, print1(sum(i=0, 2*n+1, binomial(2*n+1, i)*bernfrac(i)*4^i), ", "))

(PARI) a(n)=subst(bernpol(2*n+1), 'x, 1/4)*4^(2*n+1)*(-1)^(n+1) \\ Charles R Greathouse IV, Dec 10 2014

(Python) # The objective of this implementation is efficiency.

# n -> [a(0), a(1), ..., a(n)] for n > 0.

def A009843_list(n):

....S = [0 for i in range(0, n+1)]

....S[0] = 1

....for k in range(1, n+1):

........S[k] = k*S[k-1]

....for k in range(1, n+1):

........for j in range(k, n+1):

............S[j] = (j-k)*S[j-1]+(j-k+1)*S[j]

........S[k] = (2*k+1)*S[k]

....return S

print(A009843_list(10)) # Peter Luschny, Aug 09 2011

CROSSREFS

Bisection of A009391, A009392, A065619, A083008.

Cf. A099028. Cf. A002111, A069852, A069994.

Sequence in context: A245309 A074708 A160143 * A182962 A223076 A272482

Adjacent sequences:  A009840 A009841 A009842 * A009844 A009845 A009846

KEYWORD

nonn,easy

AUTHOR

R. H. Hardin

EXTENSIONS

Extended and signs tested by Olivier Gérard, Mar 15 1997

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 29 15:31 EDT 2017. Contains 284273 sequences.