login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002111 Glaisher's G numbers.
(Formerly M4007 N1660)
10
1, 5, 49, 809, 20317, 722813, 34607305, 2145998417, 167317266613, 16020403322021, 1848020950359841, 252778977216700025, 40453941942593304589, 7488583061542051450829, 1587688770629724715374457, 382218817191632327375004833 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Related to the formula Sum_{k>0} sin(kx)/k^(2n+1)=(-1)^(n+1)/2*x^(2n+1)/(2n+1)! * Sum_{i=0..2n} (2Pi/x)^i*B(i)*C(2n+1,i). - Benoit Cloitre, May 01 2002
Named after the English mathematician and astronomer James Whitbread Lee Glaisher (1848-1928). - Amiram Eldar, Jun 16 2021
REFERENCES
A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 76.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..254 (first 50 terms from T. D. Noe)
Shaun Cooper, Cubic elliptic functions, Res. Lett. Inf. Math. Sci., Vol. 5 (2003), pp. 23-59, see page 30.
Ira M. Gessel, On the Almkvist-Meurman Theorem for Bernoulli Polynomials, Integers (2023) Vol. 23, #A14.
J. W. L. Glaisher, On a set of coefficients analogous to the Eulerian numbers, Proc. London Math. Soc., Vol. 31 (1899), pp. 216-235.
René Gy, Bernoulli-Stirling Numbers, Integers, Vol. 20, (2020), #A67.
N. J. A. Sloane, Transforms.
FORMULA
To get these numbers, expand the e.g.f. (3/2)/(1+exp(x)+exp(-x)), multiply coefficient of x^n by (n+1)! and take absolute values.
Or expand the e.g.f. (3/2)/(1+2*cos(x)) and multiply coefficient of x^n by (n+1)!. - Herb Conn, Feb 25 2002
a(n) = (2n+1)*I(n), where I(n) is given by A047788/A047789.
a(n) = Sum_{i=0, 2n} B(i)*C(2n+1, i)*3^i where B(i) are the Bernoulli numbers, C(2n, i) the binomial numbers. - Benoit Cloitre, May 01 2002
a(n) = (-1)^n * (6*n + 3) * s(2*n), if n>0, where s(n) are the cubic Bernoulli numbers. - Michael Somos, Feb 26 2004
E.g.f.: 3*x / (2 + 4*cos(x)) = Sum_{n>=0} a(n) * x^(2*n+1) / (2*n+1)!. - Michael Somos, Feb 26 2004
E.g.f.: E(x) = (3/2)/(1+2*cos(x)) - 1/2 = x^2/(3*G(0)+x^2); G(k) = 2*(2*k+1)*(k+1) - x^2 + 2*x^2*(2*k+1)*(k+1)/G(k+1); (continued fraction Euler's kind, 1-step). Let f[n]:=coeftayl(E(x), x=0, n) then: A002111[n]=f[2*n+2]*((2*n+3)!). - Sergei N. Gladkovskii, Jan 14 2012
a(n) = Sum_{k=0..2n+1} Sum_{j=0..k} Sum_{v=0..j} ((-1)^(n-v+1)/(j+1))* binomial(2*n+1,k)*binomial(j,v)*(3*v)^k. - Peter Luschny, Jun 03 2013
a(n) ~ (2*n+1)! * sqrt(3) * (3/(2*Pi))^(2*n+1). - Vaclav Kotesovec, Jul 30 2013
From Peter Bala, Mar 02 2015: (Start)
a(n) = (-1)^(n+1)*3^(2*n+1)*B(2*n+1,1/3), where B(n,x) denotes the n-th Bernoulli polynomial. Cf. A009843, A069852, A069994.
Conjecturally, a(n) = the unsigned numerator of B(2*n+1,1/3). Cf. A033470.
Essentially a bisection of |A083007|.
G.f. for signed version of sequence: 1/2 + 1/2*Sum_{n >= 0} { 1/(n+1) * Sum_{k = 0..n} (-1)^(k+1)*binomial(n,k)/( (1 - (3*k + 1)*x)*(1 - (3*k + 2)*x) ) } = x^2 - 5*x^4 + 49*x^6 - .... (End)
EXAMPLE
G.f. = x + 5*x^2 + 49*x^3 + 809*x^4 + 20317*x^5 + 722813*x^6 + 34607305*x^7 + ...
MAPLE
read transforms; t1 := (3/2)/(1+exp(x)+exp(-x)); series(t1, x, 50): t2 := SERIESTOLISTMULT(t1); [seq(n*t2[n], n=1..nops(t5))];
MATHEMATICA
s[n_] := CoefficientList[Series[(1/2)*(Sin[t/2]/Sin[3*(t/2)]), {t, 0, 32}], t][[n + 1]]*n!*(-1)^Floor[n/2]; a[n_] := (-1)^n*(6*n + 3)*s[2*n]; Table[a[n], {n, 1, 16}] (* Jean-François Alcover, Mar 22 2011, after Michael Somos' formula *)
a[ n_] := If[ n < 1, 0, (2 n + 1)! SeriesCoefficient[ 3 / (2 + 4 Cos[x]), {x, 0, 2 n}]]; (* Michael Somos, Jun 01 2012 *)
PROG
(PARI) {a(n) = if( n<1, 0, n*=2; (n+1)! * polcoeff( 3 / (2 + 4 * cos( x + O(x^n))), n))}; /* Michael Somos, Feb 26 2004 */
(PARI) a(n)=if(n<1, 0, -(-1)^n*sum(i=0, 2*n, binomial(2*n+1, i)*bernfrac(i)*3^i)) \\ Benoit Cloitre, May 01 2002
(Sage)
def A002111(n):
return add(add(add(((-1)^(n+1-v)/(j+1))*binomial(2*n+1, k)*binomial(j, v)*(3*v)^k for v in (0..j)) for j in (0..k)) for k in (0..2*n+1))
[A002111(n) for n in (1..16)] # Peter Luschny, Jun 03 2013
CROSSREFS
Sequence in context: A293847 A104600 A221972 * A305114 A001819 A064618
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 05:18 EDT 2024. Contains 371964 sequences. (Running on oeis4.)