login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291898
(n+1)^2*a(n+1) = -(9*n^2 + 9*n + 3)*a(n) - 27*n^2*a(n-1), with a(0) = 1 and a(1) = -3.
1
1, -3, 9, -21, 9, 297, -2421, 12933, -52407, 145293, -35091, -2954097, 25228971, -142080669, 602217261, -1724917221, 283305033, 38852066421, -337425235479, 1938308236731, -8364863310291, 24286959061533, -3011589296289, -574023003011199, 5028616107443691
OFFSET
0,2
LINKS
Shaun Cooper, Apéry-like sequences defined by four-term recurrence relations, arXiv:2302.00757 [math.NT], 2023.
Zhi-Hong Sun, Congruences for Apéry-like numbers, arXiv:1803.10051 [math.NT], 2018.
Zhi-Hong Sun, New congruences involving Apéry-like numbers, arXiv:2004.07172 [math.NT], 2020.
FORMULA
Given A(x) is the g.f. of this sequence, B(x) is the g.f. of A005928, and C(x) is the g.f. of A121589, then B(x) = A(C(x)).
a(n) = (-1)^n * A006077(n).
0 = y*(3 + 27*x) + y'*(1 + 18*x + 81*x^2) + y''*(x + 9*x^2 + 27*x^3) where y(x) is the g.f. of this sequence.
EXAMPLE
G.f. = 1 - 3*x + 9*x^2 - 21*x^3 + 9*x^4 + 297*x^5 - 2421*x^6 + ...
MAPLE
f:= gfun:-rectoproc({(n+1)^2*a(n+1) = -(9*n^2 + 9*n + 3)*a(n) - 27*n^2*a(n-1), a(0)=1, a(1)=-3}, a(n), remember):
map(f, [$0..50]); # Robert Israel, Nov 02 2017
MATHEMATICA
a[ n_] := If[ n < 0, 0, (-3)^n HypergeometricPFQ[ {-n, 1 - n, 2 - n}/3, {1, 1}, 1]];
a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1, 2}/3, {1}, (3 x / (1 + 3 x))^3 ] / (1 + 3 x), {x, 0, n}];
nxt[{n_, a_, b_}]:={n+1, b, (-(9 n^2+9n+3)b- a 27n^2)/(n+1)^2}; NestList[nxt, {1, 1, -3}, 30][[;; , 2]] (* Harvey P. Dale, Nov 02 2024 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( subst(eta(x + A)^3 / eta(x^3 + A), x, serreverse( x * eta(x^9 + A)^3 / eta(x + A)^3)), n))};
(Magma) I:=[-3, 9]; [1] cat [n le 2 select I[n] else (-1)*((9*n^2-9*n+3)*Self(n-1) + 27*(n-1)^2*Self(n-2))/n^2: n in [1..30]]; // G. C. Greubel, Jul 28 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Nov 02 2017
STATUS
approved