login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A142465
Triangle T(n,m) read by rows: T(n,m) = Product_{i=0..5} binomial(n+i,m)/binomial(m+i,m).
16
1, 1, 1, 1, 7, 1, 1, 28, 28, 1, 1, 84, 336, 84, 1, 1, 210, 2520, 2520, 210, 1, 1, 462, 13860, 41580, 13860, 462, 1, 1, 924, 60984, 457380, 457380, 60984, 924, 1, 1, 1716, 226512, 3737448, 9343620, 3737448, 226512, 1716, 1, 1, 3003, 736164, 24293412, 133613766, 133613766, 24293412, 736164, 3003, 1
OFFSET
0,5
COMMENTS
Triangle of generalized binomial coefficients (n,k)_6; cf. A342889. - N. J. A. Sloane, Apr 03 2021
The matrix inverse starts
1;
-1, 1;
6, -7, 1
-141, 168, -28, 1;
9911, -11844, 2016, -84, 1;
-1740901, 2081310, -355320, 15120, -210, 1. - R. J. Mathar, Mar 22 2013
LINKS
Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021).
FORMULA
T(n,m) = A056941(n,m)*binomial(n+5,m)/binomial(m+5,m).
Sum_{k=0..n} T(n, k) = A005364(n).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 7, 1;
1, 28, 28, 1;
1, 84, 336, 84, 1;
1, 210, 2520, 2520, 210, 1;
1, 462, 13860, 41580, 13860, 462, 1;
1, 924, 60984, 457380, 457380, 60984, 924, 1;
1, 1716, 226512, 3737448, 9343620, 3737448, 226512, 1716, 1;
1, 3003, 736164, 24293412, 133613766, 133613766, 24293412, 736164, 3003, 1;
MAPLE
A142465 := proc(n, m)
mul(binomial(n+i, m)/binomial(m+i, m), i=0..5) ;
end proc; # R. J. Mathar, Mar 22 2013
MATHEMATICA
T[n_, k_]:= Product[Binomial[n+j, k]/Binomial[k+j, k], {j, 0, 5}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(PARI) T(n, k) = prod(j=0, 5, binomial(n+j, k)/binomial(k+j, k)); \\ Seiichi Manyama, Apr 01 2021
(Magma)
A142465:= func< n, k | (&*[Binomial(n+j, k)/Binomial(k+j, k): j in [0..5]]) >;
[A142465(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 13 2022
(SageMath)
def A142465(n, k): return product(binomial(n+j, k)/binomial(k+j, k) for j in (0..5))
flatten([[A142465(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 13 2022
CROSSREFS
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.
Sequence in context: A179837 A238743 A168517 * A248829 A154337 A033933
KEYWORD
nonn,easy,tabl
AUTHOR
Roger L. Bagula, Sep 20 2008, Jan 28 2009
EXTENSIONS
Edited by the Associate Editors of the OEIS, May 17 2009
STATUS
approved