login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A142468
An eight-products triangle sequence of coefficients: T(n,k) = binomial(n,k) * Product_{j=1..7} j!*(n+j)!/((k+j)!*(n-k+j)!).
14
1, 1, 1, 1, 9, 1, 1, 45, 45, 1, 1, 165, 825, 165, 1, 1, 495, 9075, 9075, 495, 1, 1, 1287, 70785, 259545, 70785, 1287, 1, 1, 3003, 429429, 4723719, 4723719, 429429, 3003, 1, 1, 6435, 2147145, 61408347, 184225041, 61408347, 2147145, 6435, 1
OFFSET
0,5
COMMENTS
Triangle of generalized binomial coefficients (n,k)_8; cf. A342889. - N. J. A. Sloane, Apr 03 2021
Row sums are {1, 2, 11, 92, 1157, 19142, 403691, 10312304, 311348897, 10826298914, 426196716090, ...}.
The general function is T(n,m)_L = binomial(n,m)*Product_{k=1..L} k!*(n + k)!/((m + k)!*(n - m + k)!) to give the quadratic row {1, L+2, 1}.
LINKS
Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021).
FORMULA
T(n,k) = binomial(n,k)*Product_{j=1..7} j!*(n+j)!/((k+j)!*(n-k+j)!).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 9, 1;
1, 45, 45, 1;
1, 165, 825, 165, 1;
1, 495, 9075, 9075, 495, 1;
1, 1287, 70785, 259545, 70785, 1287, 1;
1, 3003, 429429, 4723719, 4723719, 429429, 3003, 1;
1, 6435, 2147145, 61408347, 184225041, 61408347, 2147145, 6435, 1;
MAPLE
b:= binomial;
T:= (n, k) -> b(n, k)*mul(b(n+2*j, k+j)/b(n+2*j, j), j = 1..7);
seq(seq(T(n, k), k = 0..n), n = 0..10); # G. C. Greubel, Nov 14 2019, Mar 03 2021
MATHEMATICA
T[n_, k_]:= T[n, k]= With[{B=Binomial}, B[n, k]* Product[B[n+2*j, k+j]/B[n+2*j, j], {j, 7}] ];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Nov 14 2019, Mar 03 2021 *)
PROG
(PARI) T(n, k) = b=binomial; b(n, k)*prod(j=1, 7, b(n+ 2*j, k+j)/b(n+2*j, j)); \\ G. C. Greubel, Nov 14 2019, Mar 03 2021
(Magma) B:=Binomial; [B(n, k)*(&*[B(n+2*j, k+j)/B(n+2*j, j): j in [1..7]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 14 2019, Mar 03 2021
(Sage)
b=binomial;
def T(n, k): return b(n, k)*product(b(n+2*j, k+j)/b(n+2*j, j) for j in (1..7))
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 14 2019, Mar 03 2021
CROSSREFS
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.
Sequence in context: A370232 A174158 A181144 * A359313 A304321 A156278
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Sep 20 2008
EXTENSIONS
Edited by G. C. Greubel, Nov 14 2019
STATUS
approved