OFFSET
0,5
COMMENTS
Triangle of generalized binomial coefficients (n,k)_7; cf. A342889. - N. J. A. Sloane, Apr 03 2021
LINKS
Seiichi Manyama, Rows n = 0..139, flattened
Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 8, 1;
1, 36, 36, 1;
1, 120, 540, 120, 1;
1, 330, 4950, 4950, 330, 1;
1, 792, 32670, 108900, 32670, 792, 1;
1, 1716, 169884, 1557270, 1557270, 169884, 1716, 1;
1, 3432, 736164, 16195608, 44537922, 16195608, 736164, 3432, 1;
1, 6435, 2760615, 131589315, 868489479, 868489479, 131589315, 2760615, 6435, 1;
MATHEMATICA
T[n_, k_]:= Product[Binomial[n+j, k]/Binomial[k+j, k], {j, 0, 6}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Nov 13 2022 *)
PROG
(PARI) T(n, k) = prod(j=0, 6, binomial(n+j, k)/binomial(k+j, k)); \\ Seiichi Manyama, Apr 01 2021
(Magma) [(&*[Binomial(n+j, k)/Binomial(k+j, k): j in [0..6]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 13 2022
(SageMath)
def A142467(n, k): return product(binomial(n+j, k)/binomial(k+j, k) for j in (0..6))
flatten([[A142467(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 13 2022
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Sep 20 2008
EXTENSIONS
Edited by the Associate Editors of the OEIS, May 17 2009
STATUS
approved