login
A238743
Triangle read by rows: T(n,k) = A059382(n)/(A059382(k)*A059382(n-k)).
3
1, 1, 1, 1, 7, 1, 1, 26, 26, 1, 1, 56, 208, 56, 1, 1, 124, 992, 992, 124, 1, 1, 182, 3224, 6944, 3224, 182, 1, 1, 342, 8892, 42408, 42408, 8892, 342, 1, 1, 448, 21888, 153216, 339264, 153216, 21888, 448, 1, 1, 702, 44928, 590976, 1920672, 1920672, 590976, 44928
OFFSET
0,5
COMMENTS
We assume that A059382(0)=1 since it would be the empty product.
These are the generalized binomial coefficients associated with the Jordan totient function J_3 given in A059376.
Another name might be the 3-totienomial coefficients.
LINKS
Tom Edgar, Totienomial Coefficients, INTEGERS, 14 (2014), #A62.
Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
Donald E. Knuth and Herbert S. Wilf, The power of a prime that divides a generalized binomial coefficient, J. Reine Angew. Math., 396:212-219, 1989.
FORMULA
T(n,k) = A059382(n)/(A059382(k)* A059382(n-k)).
T(n,k) = prod_{i=1..n} A059376(i)/(prod_{i=1..k} A059376(i)*prod_{i=1..n-k} A059376(i)).
T(n,k) = A059376(n)/n*(k/A059376(k)*T(n-1,k-1)+(n-k)/A059376(n-k)*T(n-1,k)).
EXAMPLE
The first five terms in the third Jordan totient function are 1,7,26,56,124 and so T(4,2) = 56*26*7*1/((7*1)*(7*1))=208 and T(5,3) = 124*56*26*7*1/((26*7*1)*(7*1))=992.
The triangle begins
1
1 1
1 7 1
1 26 26 1
1 56 208 56 1
1 124 992 992 124 1
1 182 3224 6944 3224 182 1
PROG
(Sage)
q=100 #change q for more rows
P=[0]+[i^3*prod([1-1/p^3 for p in prime_divisors(i)]) for i in [1..q]]
[[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Tom Edgar, Mar 04 2014
STATUS
approved