login
A238740
a(n) = (n+2)!^2*(n+1)!/4*hypergeom([-n],[2,3,3],-1).
0
1, 19, 961, 101101, 19116721, 5895818671, 2767218413569, 1876349280125881, 1765053702368618401, 2229877686380646862891, 3684146198939103437432641, 7785613784940909310055130469, 20653334793956901864746843979601, 67675129289987844087403319678358151
OFFSET
0,2
COMMENTS
Special values of hypergeometric function of type 1F3.
For all n it seems that the last digit of a(n) is either 1 or 9.
MAPLE
Digits:= 1100:
a:= n-> round(evalf((n+2)!^2*(n+1)!/4*hypergeom([-n], [2, 3, 3], -1))):
seq(a(n), n=0..20); # Alois P. Heinz, Mar 04 2014
MATHEMATICA
Table[(n+2)!^2*(n+1)!/4*HypergeometricPFQ[{-n}, {2, 3, 3}, -1], {n, 0, 10}] (* Vaclav Kotesovec, Mar 04 2014 *)
CROSSREFS
Sequence in context: A171226 A247279 A192569 * A285862 A136022 A203582
KEYWORD
nonn
AUTHOR
Karol A. Penson, Mar 04 2014
STATUS
approved