login
A247279
Numbers n such that A242720(n) = prime(n)*(prime(n)+4)+3 and A242719(n) - A242720(n) = 2*(prime(n)-1).
1
19, 920, 2869, 4704, 8125, 10194, 10939, 17588, 22661, 29856, 31178, 31779, 53624, 59035, 61931, 66944, 72104, 81247, 91456, 98840, 103631, 106187, 117959, 123535, 131824, 133446, 168209, 184888, 189389, 214743, 215352, 218421, 218799, 227088, 237917, 245854
OFFSET
1,1
COMMENTS
The sequence is infinite if there are infinitely many primes p_n such that p_n+4, p_n+6, p_n*(p_n+4)+2, p_n*(p_n+6)-2 are primes, but p_n^2-2 is not prime.
If the sequence A246748 is also infinite, then these two sequences show that the difference A242720(n) - A242719(n) changes its sign infinitely many times.
LINKS
FORMULA
Intersection of A245363 and A247280.
EXAMPLE
If n=920, prime(920)=7207, we have A242720(920) = 7207*7211+3 = 51969680 and A242919(920) - A242920(920) = 51984092 - 51969680 = 14412 = 2*(prime(920)-1).
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved