login
A238688
Triangle read by rows: T(n,k) = A059381(n)/(A059381(k)*A059381(n-k)).
5
1, 1, 1, 1, 3, 1, 1, 8, 8, 1, 1, 12, 32, 12, 1, 1, 24, 96, 96, 24, 1, 1, 24, 192, 288, 192, 24, 1, 1, 48, 384, 1152, 1152, 384, 48, 1, 1, 48, 768, 2304, 4608, 2304, 768, 48, 1, 1, 72, 1152, 6912, 13824, 13824, 6912, 1152, 72, 1, 1, 72, 1728, 10368, 41472, 41472
OFFSET
0,5
COMMENTS
We assume that A059381(0)=1 since it would be the empty product.
These are the generalized binomial coefficients associated with the Jordan totient function J_2 given in A007434.
Another name might be the 2-totienomial coefficients.
LINKS
Tom Edgar, Totienomial Coefficients, INTEGERS, 14 (2014), #A62.
Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
Donald E. Knuth and Herbert S. Wilf, The power of a prime that divides a generalized binomial coefficient, J. Reine Angew. Math., 396:212-219, 1989.
FORMULA
T(n,k) = A059381(n)/(A059381(k)* A059381(n-k)).
T(n,k) = prod_{i=1..n} A007434(i)/(prod_{i=1..k} A007434(i)*prod_{i=1..n-k} A007434(i)).
T(n,k) = A007434(n)/n*(k/A007434(k)*T(n-1,k-1)+(n-k)/A007434(n-k)*T(n-1,k)).
EXAMPLE
The first five terms in the second Jordan totient function are 1,3,8,12,24 and so T(4,2) = 12*8*3*1/((3*1)*(3*1))=32 and T(5,3) = 24*12*8*3*1/((8*3*1)*(3*1))=96.
The triangle begins
1
1 1
1 3 1
1 8 8 1
1 12 32 12 1
1 24 96 96 24 1
1 24 192 288 192 24 1
PROG
(Sage)
q=100 #change q for more rows
P=[0]+[i^2*prod([1-1/p^2 for p in prime_divisors(i)]) for i in [1..q]]
[[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Tom Edgar, Mar 02 2014
STATUS
approved