OFFSET
0,5
COMMENTS
LINKS
Tom Edgar, Totienomial Coefficients, INTEGERS, 14 (2014), #A62.
Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
Donald E. Knuth and Herbert S. Wilf, The power of a prime that divides a generalized binomial coefficient, J. Reine Angew. Math., 396:212-219, 1989.
FORMULA
EXAMPLE
The first five terms in the second Jordan totient function are 1,3,8,12,24 and so T(4,2) = 12*8*3*1/((3*1)*(3*1))=32 and T(5,3) = 24*12*8*3*1/((8*3*1)*(3*1))=96.
The triangle begins
1
1 1
1 3 1
1 8 8 1
1 12 32 12 1
1 24 96 96 24 1
1 24 192 288 192 24 1
PROG
(Sage)
q=100 #change q for more rows
P=[0]+[i^2*prod([1-1/p^2 for p in prime_divisors(i)]) for i in [1..q]]
[[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Tom Edgar, Mar 02 2014
STATUS
approved