login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A142463 a(n) = 2*n^2 + 2*n - 1. 31
-1, 3, 11, 23, 39, 59, 83, 111, 143, 179, 219, 263, 311, 363, 419, 479, 543, 611, 683, 759, 839, 923, 1011, 1103, 1199, 1299, 1403, 1511, 1623, 1739, 1859, 1983, 2111, 2243, 2379, 2519, 2663, 2811, 2963, 3119, 3279, 3443, 3611, 3783, 3959, 4139, 4323, 4511, 4703, 4899, 5099 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Essentially the same as A132209

From Vincenzo Librandi, Nov 25 2010: (Start)

Numbers k such that 2*k+3 is square.

First diagonal of A144562. (End)

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

Leo Tavares, Illustration: Hexagonic Diamonds.

Leo Tavares, Illustration: Hexagonic Rectangles.

Leo Tavares, Illustration: Hexagonic Crosses.

Leo Tavares, Illustration: Hexagonic Columns.

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = a(n-1) + 4*n.

From Paul Barry, Nov 03 2009: (Start)

G.f.: (1 - 6*x + x^2)/(1-x)^3.

a(n) = 4*C(n+1,2) - 1. (End)

a(n) = - A188653(2*n+1). - Reinhard Zumkeller, Apr 13 2011

a(n) = 3*( Sum_{k=1..n} k^5 )/( Sum_{k=1..n} k^3 ), n>0. - Gary Detlefs, Oct 18 2011

a(n) = (A005408(n)^2 - 3)/2. - Zhandos Mambetaliyev, Feb 11 2017

E.g.f.: (-1 + 4*x + 2*x^2)*exp(x). - G. C. Greubel, Mar 01 2021

From Leo Tavares, Nov 22 2021: (Start)

a(n) = 2*A005563(n) - A005408(n). See Hexagonic Diamonds illustration.

a(n) = A016945(n-1) + A001105(n-1). See Hexagonic Rectangles illustration.

a(n) = A004767(n-1) + A046092(n-1). See Hexagonic Crosses illustration.

a(n) = A002378(n) + A028387(n-1). See Hexagonic Columns illustration. (End)

a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Wesley Ivan Hurt, Dec 03 2021

Sum_{n>=0} 1/a(n) = tan(sqrt(3)*Pi/2)*Pi/(2*sqrt(3)). - Amiram Eldar, Sep 16 2022

MAPLE

A142463:= n-> 2*n^2 +2*n -1; seq(A142463(n), n=0..50); # G. C. Greubel, Mar 01 2021

MATHEMATICA

Array[ -#*(2-#*2)-1&, 5!, 1] (* Vladimir Joseph Stephan Orlovsky, Dec 21 2008 *)

PROG

(Magma) [2*n^2+2*n-1: n in [0..100]]

(PARI) a(n)=2*n^2+2*n-1 \\ Charles R Greathouse IV, Sep 24 2015

(Sage) [2*n^2 +2*n -1 for n in (0..50)] # G. C. Greubel, Mar 01 2021

CROSSREFS

Cf. A000096, A005408, A132209, A144562, A188653.

Cf. A005563, A016945, A001105, A000290, A004767, A046092, A002378, A028387.

Sequence in context: A119173 A106201 A132209 * A289575 A086497 A121509

Adjacent sequences: A142460 A142461 A142462 * A142464 A142465 A142466

KEYWORD

sign,easy

AUTHOR

Roger L. Bagula, Sep 19 2008

EXTENSIONS

Edited by the Associate Editors of the OEIS, Sep 02 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 18:21 EST 2022. Contains 358703 sequences. (Running on oeis4.)