The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A142463 a(n) = 2*n^2 + 2*n - 1. 31
 -1, 3, 11, 23, 39, 59, 83, 111, 143, 179, 219, 263, 311, 363, 419, 479, 543, 611, 683, 759, 839, 923, 1011, 1103, 1199, 1299, 1403, 1511, 1623, 1739, 1859, 1983, 2111, 2243, 2379, 2519, 2663, 2811, 2963, 3119, 3279, 3443, 3611, 3783, 3959, 4139, 4323, 4511, 4703, 4899, 5099 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Essentially the same as A132209 From Vincenzo Librandi, Nov 25 2010: (Start) Numbers k such that 2*k+3 is square. First diagonal of A144562. (End) LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 Leo Tavares, Illustration: Hexagonic Diamonds. Leo Tavares, Illustration: Hexagonic Rectangles. Leo Tavares, Illustration: Hexagonic Crosses. Leo Tavares, Illustration: Hexagonic Columns. Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = a(n-1) + 4*n. From Paul Barry, Nov 03 2009: (Start) G.f.: (1 - 6*x + x^2)/(1-x)^3. a(n) = 4*C(n+1,2) - 1. (End) a(n) = - A188653(2*n+1). - Reinhard Zumkeller, Apr 13 2011 a(n) = 3*( Sum_{k=1..n} k^5 )/( Sum_{k=1..n} k^3 ), n>0. - Gary Detlefs, Oct 18 2011 a(n) = (A005408(n)^2 - 3)/2. - Zhandos Mambetaliyev, Feb 11 2017 E.g.f.: (-1 + 4*x + 2*x^2)*exp(x). - G. C. Greubel, Mar 01 2021 From Leo Tavares, Nov 22 2021: (Start) a(n) = 2*A005563(n) - A005408(n). See Hexagonic Diamonds illustration. a(n) = A016945(n-1) + A001105(n-1). See Hexagonic Rectangles illustration. a(n) = A004767(n-1) + A046092(n-1). See Hexagonic Crosses illustration. a(n) = A002378(n) + A028387(n-1). See Hexagonic Columns illustration. (End) a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Wesley Ivan Hurt, Dec 03 2021 Sum_{n>=0} 1/a(n) = tan(sqrt(3)*Pi/2)*Pi/(2*sqrt(3)). - Amiram Eldar, Sep 16 2022 MAPLE A142463:= n-> 2*n^2 +2*n -1; seq(A142463(n), n=0..50); # G. C. Greubel, Mar 01 2021 MATHEMATICA Array[ -#*(2-#*2)-1&, 5!, 1] (* Vladimir Joseph Stephan Orlovsky, Dec 21 2008 *) PROG (Magma) [2*n^2+2*n-1: n in [0..100]] (PARI) a(n)=2*n^2+2*n-1 \\ Charles R Greathouse IV, Sep 24 2015 (Sage) [2*n^2 +2*n -1 for n in (0..50)] # G. C. Greubel, Mar 01 2021 CROSSREFS Cf. A000096, A005408, A132209, A144562, A188653. Cf. A005563, A016945, A001105, A000290, A004767, A046092, A002378, A028387. Sequence in context: A119173 A106201 A132209 * A289575 A086497 A121509 Adjacent sequences: A142460 A142461 A142462 * A142464 A142465 A142466 KEYWORD sign,easy AUTHOR Roger L. Bagula, Sep 19 2008 EXTENSIONS Edited by the Associate Editors of the OEIS, Sep 02 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 18:21 EST 2022. Contains 358703 sequences. (Running on oeis4.)