OFFSET
1,1
COMMENTS
Mats Granvik has conjectured that these are all the positive integers k such that sigma_0(k) - 2 > (bigomega(k) - 1) * omega(k), where sigma_0 = A000005, omega = A001221, and bigomega = A001222. - Gus Wiseman, Nov 12 2019
Numbers with more semiprime divisors than prime divisors. - Wesley Ivan Hurt, Jun 10 2021
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..23437
Christophe Cordero, Factorizations of Cyclic Groups and Bayonet Codes, arXiv:2301.13566 [math.CO], 2023, p. 20.
EXAMPLE
An example of such a pair for 36 is (4*9)|(6*6).
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Select[Range[100], Select[Subsets[facs[#], {2}], And[!Or@@Divisible@@@Tuples[#], !Or@@Divisible@@@Reverse/@Tuples[#]]&]!={}&]
PROG
(PARI)
factorizations(n, m=n, f=List([]), z=List([])) = if(1==n, listput(z, Vec(f)); z, my(newf); fordiv(n, d, if((d>1)&&(d<=m), newf = List(f); listput(newf, d); z = factorizations(n/d, d, newf, z))); (z));
is_ndf_pair(fac1, fac2) = { for(i=1, #fac1, for(j=1, #fac2, if(!(fac1[i]%fac2[j])||!(fac2[j]%fac1[i]), return(0)))); (1); };
has_at_least_one_ndfpair(z) = { for(i=1, #z, for(j=i+1, #z, if(is_ndf_pair(z[i], z[j]), return(1)))); (0); };
isA320632(n) = has_at_least_one_ndfpair(Vec(factorizations(n))); \\ Antti Karttunen, Dec 10 2020
CROSSREFS
Cf. A001055, A050336, A285572, A303362, A305149, A305193, A317144, A322435, A322437, A322439, A322440, A322441, A322442.
The following are additional cross-references relating to Granvik's conjecture.
bigomega(n) * omega(n) is A113901(n).
(bigomega(n) - 1) * omega(n) is A307409(n).
sigma_0(n) - bigomega(n) * omega(n) is A328958(n).
sigma_0(n) - 2 - (omega(n) - 1) * nu(n) is A328959(n).
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 09 2018
STATUS
approved