login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300445
a(n) is the maximum value of the quartet index of a bifurcating rooted tree with n leaves.
0
0, 0, 0, 1, 3, 9, 19, 38, 64, 106, 162, 243, 343, 479, 645, 860, 1110, 1424, 1790, 2237, 2743, 3349, 4035, 4842, 5734, 6770, 7920, 9239, 10679, 12315, 14105, 16120, 18290, 20716, 23342, 26257, 29377, 32821, 36517, 40574, 44880, 49586, 54602, 60059, 65827, 72079, 78705, 85860, 93376, 101468
OFFSET
1,5
COMMENTS
Grows asymptotically in O(n^4).
LINKS
T. M. Coronado, A. Mir, F. Rosselló, and G. Valiente, A balance index for phylogenetic trees based on quartets, arXiv preprint arXiv:1803.01651 [q-bio.PE], 2018.
Tomás M. Coronado, Balance indices for phylogenetic trees under well-known probability models, Linköping University (Sweden, 2020).
FORMULA
a(n) = a(floor(n/2)) + a(ceiling(n/2)) + binomial(floor(n/2),2) * binomial(ceiling(n/2),2) for n>3; with a(1)=a(2)=a(3)=0.
MATHEMATICA
a[n_] := a[Floor[n/2]] + a[Ceiling[n/2]] + Binomial[Floor[n/2], 2]*Binomial[Ceiling[n/2], 2]; a[1] = 0; Array[a, 50] (* Robert G. Wilson v, Mar 06 2018 *)
PROG
(R) q=c(0, 0, 0, 1)
for (i in (4:20)){q[i]=q[floor(i/2)] + q[ceiling(i/2)] + choose(floor(i/2), 2) * choose(ceiling(i/2), 2)}
CROSSREFS
Sequence in context: A146694 A146050 A147500 * A115238 A005994 A080010
KEYWORD
nonn,easy
AUTHOR
Francesc Rosselló, Mar 06 2018
STATUS
approved