OFFSET
0,4
COMMENTS
Also the number of partitions of n in which each part occurs a square number (>=0) of times.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from Seiichi Manyama)
Martin Klazar, What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I, arXiv:1808.08449 [math.CO], 2018, p. 30.
FORMULA
G.f.: Product_{k>=1} (theta_3(x^k) + 1)/2, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Oct 25 2018
EXAMPLE
n | Partitions of n in which each part occurs a square number (>=0) of times
--+-------------------------------------------------------------------------
1 | 1;
2 | 2;
3 | 3 = 2+1;
4 | 4 = 3+1 = 1+1+1+1;
5 | 5 = 4+1 = 3+2;
6 | 6 = 5+1 = 4+2 = 3+2+1 = 2+1+1+1+1;
7 | 7 = 6+1 = 5+2 = 4+3 = 4+2+1 = 3+1+1+1+1;
8 | 8 = 7+1 = 6+2 = 5+3 = 5+2+1 = 4+3+1 = 4+1+1+1+1 = 2+2+2+2;
MAPLE
b:= proc(n, i) option remember; local j; if n=0 then 1
elif i<1 then 0 else b(n, i-1); for j while
i*j^2<=n do %+b(n-i*j^2, i-1) od; % fi
end:
a:= n-> b(n$2):
seq(a(n), n=0..60); # Alois P. Heinz, May 11 2018
MATHEMATICA
nmax = 60; CoefficientList[Series[Product[(EllipticTheta[3, 0, x^k] + 1)/2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 25 2018 *)
PROG
(PARI) N=99; x='x+O('x^N); Vec(prod(i=1, N, sum(j=0, sqrtint(N\i), x^(i*j^2)))) \\ Seiichi Manyama, Oct 28 2018
(Magma) m:=60; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(&+[x^(k*j^2):j in [0..2*m]]): k in [1..2*m]]) )); // G. C. Greubel, Oct 29 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 11 2018
STATUS
approved