The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052905 a(n) = (n^2 + 7*n + 2)/2. 21
 1, 5, 10, 16, 23, 31, 40, 50, 61, 73, 86, 100, 115, 131, 148, 166, 185, 205, 226, 248, 271, 295, 320, 346, 373, 401, 430, 460, 491, 523, 556, 590, 625, 661, 698, 736, 775, 815, 856, 898, 941, 985, 1030, 1076, 1123, 1171, 1220, 1270, 1321, 1373, 1426, 1480 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Starting 1, 5, 10, 16, 23,... gives binomial transform of (1, 4, 1, 0, 0, 0,...). Row sums of triangle A134199. - Gary W. Adamson, Jul 25 2007 If Y_i (i=1,2,3,4,5) are 2-blocks of an n-set X then, for n>=10, a(n-4) is the number of (n-2)-subsets of X intersecting each Y_i (i=1,2,3,4,5). - Milan Janjic, Nov 09 2007 This sequence is related to A159920 by A159920(n+1) = n*a(n) - sum( a(i), i=0..n-1 ) for n>0. - Bruno Berselli, Feb 28 2014 Numbers m > 0 such that 8m+41 is a square. - Bruce J. Nicholson, Jul 28 2017 LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 Charles Cratty, Samuel Erickson, Frehiwet Negass, Lara Pudwell, Pattern Avoidance in Double Lists, preprint, 2015. Milan Janjic, Two Enumerative Functions INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 884 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f.: (-2*x+2*x^2-1)/(-1+x)^3. Recurrence: {a(0)=1, a(1)=5, a(2)=10, -2*a(n)+n^2+7*n+2}. a(n) = n+a(n-1)+3, with n>0, a(0)=1. - Vincenzo Librandi, Aug 06 2010 E.g.f.: (1/2)*(x^2 + 8*x + 2)*exp(x). - G. C. Greubel, Jul 13 2017 EXAMPLE Illustration of initial terms: .                                                                    o .                                                                  o o .                                                    o           o o o .                                                  o o         o o o o .                                      o         o o o       o o o o o .                                    o o       o o o o     o o o o o o .                          o       o o o     o o o o o   o . . . . . o .                        o o     o o o o   o . . . . o   o . . . . . o .                o     o o o   o . . . o   o . . . . o   o . . . . . o .              o o   o . . o   o . . . o   o . . . . o   o . . . . . o .        o   o . o   o . . o   o . . . o   o . . . . o   o . . . . . o .      o o   o . o   o . . o   o . . . o   o . . . . o   o . . . . . o .  o   o o   o o o   o o o o   o o o o o   o o o o o o   o o o o o o o ---------------------------------------------------------------------- .  1     5      10        16          23            31              40 [Bruno Berselli, Feb 28 2014] MAPLE spec := [S, {S=Prod(Sequence(Z), Sequence(Z), Union(Sequence(Z), Z, Z))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20); seq(binomial(n, 2)-5, n=4..55); # Zerinvary Lajos, Jan 13 2007 a:=n->sum((n-4)/2, j=0..n): seq(a(n)-2, n=5..56); # Zerinvary Lajos, Apr 30 2007 with (combinat):seq((fibonacci(3, n)+n-11)/2, n=3..54); # Zerinvary Lajos, Jun 07 2008 a:=n->sum(k, k=0..n):seq(a(n)/2+sum(k, k=5..n)/2, n=3..54); # Zerinvary Lajos, Jun 10 2008 MATHEMATICA i=4; s=1; lst={s}; Do[s+=n+i; If[s>=0, AppendTo[lst, s]], {n, 0, 6!, 1}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 30 2008 *) k = 3; NestList[(k++; # + k) &, 1, 45] (* Robert G. Wilson v, Feb 03 2011 *) Table[(n^2 + 7n + 2)/2, {n, 0, 49}] (* Alonso del Arte, Feb 03 2011 *) LinearRecurrence[{3, -3, 1}, {1, 5, 10}, 60] (* Harvey P. Dale, Sep 15 2018 *) PROG (PARI) a(n)=n*(n+7)/2+1 \\ Charles R Greathouse IV, Nov 20 2011 CROSSREFS Cf. A002522, A131899, A134199. Sequence in context: A313939 A313940 A212455 * A306351 A215341 A194275 Adjacent sequences:  A052902 A052903 A052904 * A052906 A052907 A052908 KEYWORD nonn,easy AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 EXTENSIONS More terms from James A. Sellers, Jun 08 2000 Edited by Charles R Greathouse IV, Jul 25 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 17:36 EDT 2021. Contains 343156 sequences. (Running on oeis4.)