login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A131423 Row sums of triangle A131422. 9
1, 8, 25, 56, 105, 176, 273, 400, 561, 760, 1001, 1288, 1625, 2016, 2465, 2976, 3553, 4200, 4921, 5720, 6601, 7568, 8625, 9776, 11025, 12376, 13833, 15400, 17081, 18880, 20801, 22848, 25025, 27336, 29785, 32376, 35113, 38000, 41041, 44240, 47601 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The Wiener index of the P_2 x P_n grid, where P_m is the path graph on m vertices. The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph. [Emeric Deutsch, Sep 05 2008]

REFERENCES

B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.

LINKS

Table of n, a(n) for n=1..41.

D. P. Walsh, Notes on the Wiener index for a simple grid graph

Eric Weisstein, MathWorld: Wiener Index

FORMULA

a(n) = n(n+2)(2n-1)/3. - Emeric Deutsch, Sep 06 2008

a(n) = sum_{k=1..n} k*A143370(n,k). - Emeric Deutsch, Sep 05 2008

a(n) = a(n-1)+2n^2-1. G.f.: x*(1+4*x-x^2)/(1-x)^4. [From Dennis P. Walsh, Dec 04 2009]

a(1)=0, a(2)=1, a(3)=8, a(4)=25, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) [From Harvey P. Dale, Feb 03 2012]

EXAMPLE

a(3) = 25 = sum of row 3 terms, triangle A131422: (6 + 8 + 11).

For n=2, the Wiener index is a(2)=8 since there are 4 vertex pairs with distances of 1 and 2 vertex pairs with distances of 2. [From Dennis P. Walsh, Dec 04 2009]

MAPLE

seq((1/3)*n*(n+2)*(2*n-1), n=1..43); [From Emeric Deutsch, Sep 06 2008]

MATHEMATICA

f[n_]:=Sum[2*i^2-1, {i, 1, n}]; Table[f[n], {n, 0, 6!}] (* _Vladimir Orlovsky_, Mar 08 2010 *)

Table[Sum[2k^2-1, {k, n}], {n, 0, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 1, 8, 25}, 50] (* Harvey P. Dale, Feb 03 2012 *)

CROSSREFS

Cf. A131422.

Sequence in context: A062728 A244942 * A143371 A004640 A011924 A244834

Adjacent sequences:  A131420 A131421 A131422 * A131424 A131425 A131426

KEYWORD

nonn

AUTHOR

Gary W. Adamson, Jul 10 2007

EXTENSIONS

More terms from Emeric Deutsch, Sep 06 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 20 09:20 EDT 2014. Contains 248329 sequences.