This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A019727 Decimal expansion of sqrt(2*Pi). 35
 2, 5, 0, 6, 6, 2, 8, 2, 7, 4, 6, 3, 1, 0, 0, 0, 5, 0, 2, 4, 1, 5, 7, 6, 5, 2, 8, 4, 8, 1, 1, 0, 4, 5, 2, 5, 3, 0, 0, 6, 9, 8, 6, 7, 4, 0, 6, 0, 9, 9, 3, 8, 3, 1, 6, 6, 2, 9, 9, 2, 3, 5, 7, 6, 3, 4, 2, 2, 9, 3, 6, 5, 4, 6, 0, 7, 8, 4, 1, 9, 7, 4, 9, 4, 6, 5, 9, 5, 8, 3, 8, 3, 7, 8, 0, 5, 7, 2, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Pickover says that the expression: lim(n -> infinity) e^n(n!) / (n^n * sqrt(n)) = sqrt(2*Pi) is beautiful because it connects Pi, e, radicals, factorials and infinite limits. - Jason Earls, Mar 16 2001 Appears in the formula of the normal distribution. - Johannes W. Meijer, Feb 23 2013 REFERENCES Mohammad K. Azarian, An Expression for Pi, Problem #870, College Mathematics Journal, Vol. 39, No. 1, January 2008, pp. 66. Solution appeared in Vol. 40, No. 1, January 2009, pp. 62-64. Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137. C. Pickover, Wonders of Numbers, Oxford University Press, NY, 2001, p. 307. LINKS Harry J. Smith, Table of n, a(n) for n = 1..20000 Eric W. Weisstein, MathWorld: Normal Distribution FORMULA Equal to lim(n -> infinity) e^n*(n!)/n^n*sqrt(n). Also equals Integral_{x >= 0} W(1/x^2) where W is the Lambert function, which is also known as ProductLog. - Jean-François Alcover, May 27 2013 Also equals the generalized Glaisher-Kinkelin constant A_0, see the Finch reference - Jean-François Alcover, Dec 23 2014 EXAMPLE 2.506628274631000502415765284811045253006986740609938316629923576342293... - Harry J. Smith, May 31 2009 MATHEMATICA RealDigits[Sqrt[2Pi], 10, 120][[1]] (* Harvey P. Dale, Dec 12 2012 *) PROG (PARI) { default(realprecision, 20080); x=sqrt(2*Pi); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b019727.txt", n, " ", d)); } \\ Harry J. Smith, May 31 2009 (Maxima) fpprec: 100\$ ev(bfloat(sqrt(2*%pi))); /* Martin Ettl, Oct 11 2012 */ (MAGMA) R:= RealField(100); Sqrt(2*Pi(R)); // G. C. Greubel, Mar 08 2018 CROSSREFS Cf. A058293 (continued fraction), A231863 (inverse), A000796 (Pi). Sequence in context: A021403 A299623 A290796 * A011184 A157214 A066033 Adjacent sequences:  A019724 A019725 A019726 * A019728 A019729 A019730 KEYWORD nonn,cons AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 17 20:50 EST 2018. Contains 317278 sequences. (Running on oeis4.)