

A019727


Decimal expansion of sqrt(2*Pi).


10



2, 5, 0, 6, 6, 2, 8, 2, 7, 4, 6, 3, 1, 0, 0, 0, 5, 0, 2, 4, 1, 5, 7, 6, 5, 2, 8, 4, 8, 1, 1, 0, 4, 5, 2, 5, 3, 0, 0, 6, 9, 8, 6, 7, 4, 0, 6, 0, 9, 9, 3, 8, 3, 1, 6, 6, 2, 9, 9, 2, 3, 5, 7, 6, 3, 4, 2, 2, 9, 3, 6, 5, 4, 6, 0, 7, 8, 4, 1, 9, 7, 4, 9, 4, 6, 5, 9, 5, 8, 3, 8, 3, 7, 8, 0, 5, 7, 2, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Pickover says that the expression: lim(n > infinity) e^n(n!) / (n^n * sqrt(n)) = sqrt(2*Pi) is beautiful because it connects Pi, e, radicals, factorials and infinite limits.  Jason Earls (zevi_35711(AT)yahoo.com), Mar 16 2001
Appears in the formula of the normal distribution.  Johannes W. Meijer, Feb 23 2013


REFERENCES

Mohammad K. Azarian, An Expression for Pi, Problem #870, College Mathematics Journal, Vol. 39, No. 1, January 2008, pp. 66. Solution appeared in Vol. 40, No. 1, January 2009, pp. 6264.
C. Pickover, Wonders of Numbers, Oxford University Press, NY, 2001, p. 307.


LINKS

Harry J. Smith, Table of n, a(n) for n = 1..20000
C. A. Pickover, Zentralblatt review of Wonders of Numbers, Adventures in Mathematics, Mind and Meaning
Eric W. Weisstein, MathWorld: Normal Distribution


FORMULA

Equal to lim(n > infinity) e^n*(n!)/n^n*sqrt(n).
Also equals integral_{x = 0..infinity} W(1/x^2) where W is the Lambert function, which is also known as ProductLog. [JeanFrançois Alcover, May 27 2013]


EXAMPLE

2.506628274631000502415765284811045253006986740609938316629923576342293... [Harry J. Smith, May 31 2009]


MATHEMATICA

RealDigits[Sqrt[2Pi], 10, 120][[1]] (* Harvey P. Dale, Dec 12 2012 *)


PROG

(PARI) { default(realprecision, 20080); x=sqrt(2*Pi); for (n=1, 20000, d=floor(x); x=(xd)*10; write("b019727.txt", n, " ", d)); } \\ Harry J. Smith, May 31 2009
(Maxima) fpprec: 100$ ev(bfloat(sqrt(2*%pi))); /* Martin Ettl, Oct 11 2012 */


CROSSREFS

Cf. A058293 (continued fraction), A231863 (inverse), A000796 (Pi).
Sequence in context: A242969 A090625 A021403 * A011184 A157214 A066033
Adjacent sequences: A019724 A019725 A019726 * A019728 A019729 A019730


KEYWORD

nonn,cons


AUTHOR

N. J. A. Sloane.


STATUS

approved



