login
A231863
Decimal expansion of 1/sqrt(2*Pi).
11
3, 9, 8, 9, 4, 2, 2, 8, 0, 4, 0, 1, 4, 3, 2, 6, 7, 7, 9, 3, 9, 9, 4, 6, 0, 5, 9, 9, 3, 4, 3, 8, 1, 8, 6, 8, 4, 7, 5, 8, 5, 8, 6, 3, 1, 1, 6, 4, 9, 3, 4, 6, 5, 7, 6, 6, 5, 9, 2, 5, 8, 2, 9, 6, 7, 0, 6, 5, 7, 9, 2, 5, 8, 9, 9, 3, 0, 1, 8, 3, 8, 5, 0, 1, 2, 5, 2, 3, 3, 3, 9, 0, 7, 3, 0, 6, 9, 3, 6, 4, 3, 0, 3, 0, 2
OFFSET
0,1
COMMENTS
Maximum of the probability density for standard error distribution (i.e., normal distribution density with unit variance).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000 (terms 0..2000 from Stanislav Sykora)
Amir Behrouzi-Far and Doron Zeilberger, On the Average Maximal Number of Balls in a Bin Resulting from Throwing r Balls into n Bins T times, arXiv:1905.07827 [math.CO], 2019.
Marcus Michelen, A Short Note on the Average Maximal Number of Balls in a Bin, Journal of Integer Sequences, Vol. 23 (2020), Article 20.1.7. See C 2,1 Table 2 p. 6. And also on arXiv, arXiv:1905.08933 [math.CO], 2019.
Roger Zarnowski and Charles Diminnie, Solution to Problem 934, Pi Mu Epsilon Journal, Vol. 10, No. 10 (1999), pp. 846-847.
FORMULA
Equals Integral_{x=-oo..oo} sin(Pi^2*x^2 + 1/x^2) dx (Zarnowski and Diminnie, 1999). - Amiram Eldar, May 21 2022
EXAMPLE
0.39894228040143267793994605993438186847585863116493465766592582967...
MATHEMATICA
RealDigits[1/Sqrt[2*Pi], 10, 100][[1]] (* G. C. Greubel, Jul 27 2018 *)
PROG
(PARI) 1/sqrt(2*Pi) \\ G. C. Greubel, Jul 27 2018
(Magma) R:= RealField(); 1/Sqrt(2*Pi(R)); // G. C. Greubel, Jul 27 2018
CROSSREFS
Cf. A019727 (inverse), A000796 (Pi).
Sequence in context: A193117 A016677 A288095 * A179589 A368737 A302630
KEYWORD
nonn,cons,easy
AUTHOR
Stanislav Sykora, Nov 14 2013
STATUS
approved