login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231863
Decimal expansion of 1/sqrt(2*Pi).
11
3, 9, 8, 9, 4, 2, 2, 8, 0, 4, 0, 1, 4, 3, 2, 6, 7, 7, 9, 3, 9, 9, 4, 6, 0, 5, 9, 9, 3, 4, 3, 8, 1, 8, 6, 8, 4, 7, 5, 8, 5, 8, 6, 3, 1, 1, 6, 4, 9, 3, 4, 6, 5, 7, 6, 6, 5, 9, 2, 5, 8, 2, 9, 6, 7, 0, 6, 5, 7, 9, 2, 5, 8, 9, 9, 3, 0, 1, 8, 3, 8, 5, 0, 1, 2, 5, 2, 3, 3, 3, 9, 0, 7, 3, 0, 6, 9, 3, 6, 4, 3, 0, 3, 0, 2
OFFSET
0,1
COMMENTS
Maximum of the probability density for standard error distribution (i.e., normal distribution density with unit variance).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000 (terms 0..2000 from Stanislav Sykora)
Amir Behrouzi-Far and Doron Zeilberger, On the Average Maximal Number of Balls in a Bin Resulting from Throwing r Balls into n Bins T times, arXiv:1905.07827 [math.CO], 2019.
Marcus Michelen, A Short Note on the Average Maximal Number of Balls in a Bin, Journal of Integer Sequences, Vol. 23 (2020), Article 20.1.7. See C 2,1 Table 2 p. 6. And also on arXiv, arXiv:1905.08933 [math.CO], 2019.
Roger Zarnowski and Charles Diminnie, Solution to Problem 934, Pi Mu Epsilon Journal, Vol. 10, No. 10 (1999), pp. 846-847.
FORMULA
Equals Integral_{x=-oo..oo} sin(Pi^2*x^2 + 1/x^2) dx (Zarnowski and Diminnie, 1999). - Amiram Eldar, May 21 2022
EXAMPLE
0.39894228040143267793994605993438186847585863116493465766592582967...
MATHEMATICA
RealDigits[1/Sqrt[2*Pi], 10, 100][[1]] (* G. C. Greubel, Jul 27 2018 *)
PROG
(PARI) 1/sqrt(2*Pi) \\ G. C. Greubel, Jul 27 2018
(Magma) R:= RealField(); 1/Sqrt(2*Pi(R)); // G. C. Greubel, Jul 27 2018
CROSSREFS
Cf. A019727 (inverse), A000796 (Pi).
Sequence in context: A193117 A016677 A288095 * A179589 A368737 A302630
KEYWORD
nonn,cons,easy
AUTHOR
Stanislav Sykora, Nov 14 2013
STATUS
approved