login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058884 Partial sums of the partition function (A000041), with the last term subtracted. Also the sum of the row of the character table for S_n corresponding to the partition n-1,1 for n>1. Also the sum over all partitions lambda of n of one less than the number of 1's in lambda. 8
-1, 0, 0, 1, 2, 5, 8, 15, 23, 37, 55, 83, 118, 171, 238, 332, 453, 618, 827, 1107, 1460, 1922, 2504, 3253, 4188, 5380, 6860, 8722, 11024, 13895, 17421, 21787, 27122, 33677, 41653, 51390, 63179, 77496, 94755, 115600, 140632, 170725, 206717, 249804, 301151, 362367, 435077, 521439, 623674, 744695 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

For n>=1 number of up-steps in all partitions of n (represented as weakly increasing lists), see example. - Joerg Arndt, Sep 03 2014

LINKS

Table of n, a(n) for n=0..49.

M. Archibald, A. Blecher, A. Knopfmacher, M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.

S. Heubach, A. Knopfmacher, M. E. Mays and A. Munagi, Inversions in Compositions of Integers, Quaestiones Mathematicae 34 (2011), 187-202.

EXAMPLE

a(6) = 8 because the 11 partitions of 6

01:  [ 1 1 1 1 1 1 ]

02:  [ 1 1 1 1 2 ]

03:  [ 1 1 1 3 ]

04:  [ 1 1 2 2 ]

05:  [ 1 1 4 ]

06:  [ 1 2 3 ]

07:  [ 1 5 ]

08:  [ 2 2 2 ]

09:  [ 2 4 ]

10:  [ 3 3 ]

11:  [ 6 ]

contain 0+1+1+1+1+2+1+0+1+0+0 = 8 up-steps. - Joerg Arndt, Sep 03 2014

MAPLE

f := proc(n) sum('numbpart(k)', 'k'=0..n-1)-numbpart(n); end;

MATHEMATICA

p[n_] := IntegerPartitions[n]; l[n_] := Length[p[n]]; Table[Count[Flatten[p[n]], 1] - l[n], {n, 0, 30}] (* Clark Kimberling, Mar 08 2012 *)

CROSSREFS

Cf. A000041.

Cf. A218074 (up-steps in partitions into distinct parts).

Sequence in context: A077866 A098894 A121641 * A073335 A239258 A309551

Adjacent sequences:  A058881 A058882 A058883 * A058885 A058886 A058887

KEYWORD

sign,easy

AUTHOR

Edward Early, Jan 08 2001

EXTENSIONS

More terms from James A. Sellers, Sep 28 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 09:16 EDT 2020. Contains 336274 sequences. (Running on oeis4.)