login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A287072 Start with 0 and repeatedly substitute 0->01, 1->21, 2->0. 6
0, 1, 2, 1, 0, 2, 1, 0, 1, 0, 2, 1, 0, 1, 2, 1, 0, 1, 0, 2, 1, 0, 1, 2, 1, 0, 2, 1, 0, 1, 2, 1, 0, 1, 0, 2, 1, 0, 1, 2, 1, 0, 2, 1, 0, 1, 0, 2, 1, 0, 1, 2, 1, 0, 2, 1, 0, 1, 2, 1, 0, 1, 0, 2, 1, 0, 1, 2, 1, 0, 2, 1, 0, 1, 0, 2, 1, 0, 1, 2, 1, 0, 1, 0, 2, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

A fixed point of the morphism 0->01, 1->21, 2->0.  Let u be the sequence of positions of 0, and likewise, v for 1 and w for 2.  Let U, V, W be the limits of u(n)/n, v(n)/n, w(n)/n, respectively.  Then 1/U + 1/V + 1/W = 1, where

U = 3.079595623491438786010417...,

V = 2.324717957244746025960908...,

W = U + 1 = 3.079595623491438786010417....

Since the morphism 0->01, 1->21, 2->0 is the time reversal of the morphism 0->10, 1->12  2->0, which has fixed point A287104, in particular the incidence matrices of these two morphisms are equal. Thus the algebraic expressions found for U, V and W in A287104 do also apply to the U, V and W above. - Michel Dekking, Sep 15 2019

If n >=2, then u(n) - u(n-1) is in {2,3,4}, v(n) - v(n-1) is in {2,3}, and w(n) - w(n-1) is in {3,4,5}.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

Index entries for sequences that are fixed points of mappings

MATHEMATICA

s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {2, 1}, 2 -> 0}] &, {0}, 10] (* A287072 *)

Flatten[Position[s, 0]] (* A287073 *)

Flatten[Position[s, 1]] (* A287074 *)

Flatten[Position[s, 2]] (* A287075 *)

CROSSREFS

Cf. A057985, A287073, A287074, A287075, A287104.

Sequence in context: A291336 A208664 A030200 * A095734 A137269 A112201

Adjacent sequences:  A287069 A287070 A287071 * A287073 A287074 A287075

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, May 21 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 20:11 EST 2019. Contains 329129 sequences. (Running on oeis4.)