This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A083906 Table T(n,k) read along rows: the coefficient [q^k] of the Sum_{m=0..n} [n,m]_q over q-Binomial coefficients. 10
 1, 2, 3, 1, 4, 2, 2, 5, 3, 4, 3, 1, 6, 4, 6, 6, 6, 2, 2, 7, 5, 8, 9, 11, 9, 7, 4, 3, 1, 8, 6, 10, 12, 16, 16, 18, 12, 12, 8, 6, 2, 2, 9, 7, 12, 15, 21, 23, 29, 27, 26, 23, 21, 15, 13, 7, 4, 3, 1, 10, 8, 14, 18, 26, 30, 40, 42, 48, 44, 46, 40 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS There are A033638(n) values in the n-th row, compliant with the order of the polynomial. In the example for n=6 detailed below, the orders of [6,k]_q are 1,6,9,10,9,6,1 for k=0..6, the maximum order 10 defining the row length. Note also that 1 6 9 10 9 6 1 and related distributions are antidiagonals of A077028. A083480 is a variation illustrating a relationship with numeric partitions, A000041. The rows are formed by the nonzero entries of the columns of A049597. The coefficient of q^j in the Gaussian polynomial [n,m]_q is the number of binary words on alphabet {0,1} of length n having m 1's and j inversions. Hence T(n,k) is the number of length n binary words with exactly k inversions. - Geoffrey Critzer, May 14 2017 If n is even the n-th row converges to n+1, n-1, n-4, ..., 19, 13, 7, 4, 3, 1 which is A029552 reversed, and if n is odd the sequence is twice A098613. - Michael Somos, Jun 25 2017 REFERENCES Andrews(1976) Theory of Partitions (page 242) LINKS Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018. Alexander Gruber, "The Egg:" Bizarre behavior of the roots of a family of polynomials Mathematics StackExchange Oct 04 2012 Eric Weisstein, q-Binomial Coefficient, Mathworld. Wikipedia, q-binomial FORMULA Row sums: Sum_k T(n,k) = 2^n. EXAMPLE When viewed as an array with A033638(r) entries per row, the table begins: . 1 ....... : 1 . 2 ....... : 2 . 3 1 ....... : 3+q = (1)+(1+q)+(1) . 4 2 2 ....... : 4+2q+2q^2 = 1+(1+q+q^2)+(1+q+q^2)+1 . 5 3 4 3 1 ....... : 5+3q+4q^2+3q^3+q^4 . 6 4 6 6 6 2 2 . 7 5 8 9 11 9 7 4 3 1 ....... : 7+5q+8q^2+9q^3+11q^4+9q^5+... . 8 6 10 12 16 16 18 12 12 8 6 2 2 . 9 7 12 15 21 23 29 27 26 23 21 15 13 7 4 3 1 ... The second but last row is from the sum over 7 q-polynomials coefficients ....... : . 1 ....... : 1 = [6,0]_q . 1 1 1 1 1 1 ....... : 1+q+q^2+q^3+q^4+q^5 = [6,1]_q . 1 1 2 2 3 2 2 1 1 ....... : 1+q+2q^2+2q^3+3q^4+2q^5+2q^6+q^7+q^8 = [6,2]_q . 1 1 2 3 3 3 3 2 1 1 ....... : 1+q+2q^2+3q^3+3q^4+3q^5+3q^6+2q^7+q^8+q^9 = [6,3]_q . 1 1 2 2 3 2 2 1 1 ....... : 1+q+2q^2+2q^3+3q^4+2q^5+2q^6+q^7+q^8 = [6,4]_q . 1 1 1 1 1 1 ....... : 1+q+q^2+q^3+q^4+q^5 = [6,5]_q . 1 ....... : 1 = [6,6]_q MAPLE QBinomial := proc(n, m, q) local i ; factor( mul((1-q^(n-i))/(1-q^(i+1)), i=0..m-1) ) ; expand(%) ; end: A083906 := proc(n, k) add( QBinomial(n, m, q), m=0..n ) ; coeftayl(%, q=0, k) ; end: for n from 0 to 10 do for k from 0 to A033638(n)-1 do printf("%d, ", A083906(n, k)) ; od: od: # R. J. Mathar, May 28 2009 MATHEMATICA Table[CoefficientList[Total[Table[FunctionExpand[QBinomial[n, k, q]], {k, 0, n}]], q], {n, 0, 10}] // Grid (* Geoffrey Critzer, May 14 2017 *) PROG (PARI) {T(n, k) = polcoeff(sum(m=0, n, prod(k=0, m-1, (x^n - x^k) / (x^m - x^k))), k)}; /* Michael Somos, Jun 25 2017 */ CROSSREFS Cf. A029552, A033638, A077028, A083479, A083480, A098613. Sequence in context: A104705 A143361 A152547 * A160541 A286001 A304106 Adjacent sequences:  A083903 A083904 A083905 * A083907 A083908 A083909 KEYWORD nonn,tabf AUTHOR Alford Arnold, Jun 19 2003 EXTENSIONS Edited by R. J. Mathar, May 28 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 25 12:11 EDT 2019. Contains 321470 sequences. (Running on oeis4.)