The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005360 Flimsy numbers. (Formerly M4771) 6
 11, 13, 19, 22, 23, 25, 26, 27, 29, 37, 38, 39, 41, 43, 44, 46, 47, 50, 52, 53, 54, 55, 57, 58, 59, 61, 67, 71, 74, 76, 77, 78, 79, 81, 82, 83, 86, 87, 88, 91, 92, 94, 95, 97, 99, 100, 101, 103, 104, 106, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 121 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Definition: n is flimsy if and only if there exists a k such that A000120(k*n) < A000120(n). That is, some multiple of n has fewer ones in its binary expansion than does n. What are the associated k for each n? What is the smallest n for each k? Stolarsky says "at least half the primes are flimsy." - Jonathan Vos Post, Jul 07 2008 A143073(n) gives the least k for each n in this sequence. - T. D. Noe, Jul 22 2008 If k is in this sequence then so is 2*k. - David A. Corneth, Oct 01 2016 REFERENCES Bojan Basic, The existence of n-flimsy numbers in a given base, The Ramanujan Journal, March 7, 2016, pages 1-11. DOI 10.1007/s11139-015-9768-7. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n=1..1000 Trevor Clokie et al., Computational Aspects of Sturdy and Flimsy Numbers, arxiv preprint arXiv:2002.02731 [cs.DS], February 7 2020. Tony D. Noe, Odd sturdy numbers, Integer Sequences #S000848. K. B. Stolarsky, Integers whose multiples have anomalous digital frequencies, Acta Arith. 38 (1980) 117-128. EXAMPLE 11 is flimsy because A000120(3*11) = 2 < A000120(11) = 3. 107 is flimsy because A000120(3*107) = 3 < A000120(107) = 5. The numbers 37*2^j are flimsy with k=7085. The numbers 67*2^j are flimsy with k = 128207979, 81*2^j are flimsy with k = 1657009, 83*2^j are flimsy with k = 395, 97*2^j with k = 172961, 101*2^j with k = 365, 113*2^j with k = 145, 137*2^j with k = 125400505, any j >= 0. - R. J. Mathar, Jul 14 2008 MATHEMATICA nmax = 121; kmax = 200; nn = {37, 67, 81, 83, 97, 101, 113}; flimsyQ[n_ /; MemberQ[nn, n] || MatchQ[FactorInteger[n], {{2, _} , {Alternatives @@ nn, 1}}]] = True; flimsyQ[n_] := For[k = 2, True, k++, Which[DigitCount[k * n, 2, 1] < DigitCount[n, 2, 1], Return[True], k > kmax, Return[False]]]; Reap[Do[If[flimsyQ[n], Sow[n]], {n, 2, nmax}]][[2, 1]] (* Jean-François Alcover, May 23 2012, after R. J. Mathar *) nmax = 200; Bits[n_Integer] := Count[IntegerDigits[n, 2], 1]; FlimsyQ[n_Integer] := FlimsyQ[n] = Module[{res, b = Bits[n], k}, If[b <= 2, False, If[EvenQ[n], FlimsyQ[n/2], res = Union[Mod[2^Range[n], n]]; If[Length[res] == n - 1, True, k = 2; While[k < b && ! MemberQ[Union[Mod[Plus @@@ Subsets[res, {k}], n]], 0], k++]; k < b]]]]; Select[Range[nmax], FlimsyQ] (* Jean-François Alcover, Feb 11 2016, this code is due to T. D. Noe *) PROG (C++) #include #include int A000120(unsigned long long n) { int b=0 ; while(n>0) { b += n & 1 ; n >>= 1 ; } return b; } using namespace std ; int main(int argc, char *argv[]) { unsigned long long kmax=atoi(argv[1]) ; for(unsigned long long n=1;; n++) { const int n120=A000120(n) ; for(unsigned long long k=3; k < kmax ; k+= 2) if ( A000120(k*n) < n120) { cout << n << " " << k << endl ; break ; } } } /* R. J. Mathar, Jul 14 2008 */ CROSSREFS Cf. A000120, A125121 (complement). Sequence in context: A357074 A268487 A216687 * A269806 A062019 A057891 Adjacent sequences: A005357 A005358 A005359 * A005361 A005362 A005363 KEYWORD nonn,nice,base AUTHOR EXTENSIONS More terms from R. J. Mathar, Jul 14 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 02:09 EST 2022. Contains 358712 sequences. (Running on oeis4.)