login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099163 Expansion of (1-2x^2)/((1-2x)(1+x-x^2));. 1
1, 1, 2, 3, 7, 12, 27, 49, 106, 199, 419, 804, 1663, 3237, 6618, 13003, 26383, 52156, 105299, 209001, 420586, 836991, 1680747, 3350548, 6718807, 13408957, 26864282, 53653539, 107428471, 214660524, 429638859, 858763489, 1718359018, 3435371767 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Counts closed walks of length n at the vertex with loop of the graph with adjacency matrix A=[0,1,1,1;1,0,0,0;1,0,0,0;1,0,0,1]. Binomial transform is A099164.

LINKS

Table of n, a(n) for n=0..33.

Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750.

Index entries for linear recurrences with constant coefficients, signature (1,3,-2).

FORMULA

a(n)=a(n-1)+3a(n-2)-2a(n-3); a(n)=((sqrt(5)-1)/2)^n(3/10+sqrt(5)/10)+((-sqrt(5)-1)/2)^n(3/10-sqrt(5)/10)+2^(n+1)/5; a(n)=sum{k=0..n, (-1)^(n-k)Fib(n-k+1)(2^(k-1)+0^k/2-sum{j=0..k, C(k, j)j(-1)^j})}.

4*a(n+1) - a(n+3) = A039834(n) - Creighton Dement, Feb 25 2005

Contribution from Paul D. Hanna, Jan 02 2009: (Start)

a(n) = Sum_{k=-[n/5]..[n/5]} C(n, [(n-5*k)/2]).

a(n) = 2*Sum_{k=-[n/10]..[n/10]} C(n, [n/2]-5*k) - fibonacci(n+1). (End)

PROG

Floretion Algebra Multiplication Program, FAMP Code: 1jesforseq[ (.5'i + .5i' + .5'ii' + .5e)*(.5j' + .5'kk' + .5'ki' + .5e) ], 1vesforseq = A000079(n+2) (Dement)

Contribution from Paul D. Hanna, Jan 02 2009: (Start)

(PARI) a(n)=sum(k=-n\5, n\5, binomial(n, (n-5*k)\2))

(PARI) a(n)=-fibonacci(n+1)+2*sum(k=-n\10, n\10, binomial(n, n\2-5*k)) (End)

CROSSREFS

Cf. A039834.

Sequence in context: A054272 A259593 A129016 * A000676 A283823 A263658

Adjacent sequences:  A099160 A099161 A099162 * A099164 A099165 A099166

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Oct 01 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 21 12:01 EDT 2017. Contains 290864 sequences.