login
A099163
Expansion of (1-2*x^2)/((1-2*x)*(1+x-x^2)).
3
1, 1, 2, 3, 7, 12, 27, 49, 106, 199, 419, 804, 1663, 3237, 6618, 13003, 26383, 52156, 105299, 209001, 420586, 836991, 1680747, 3350548, 6718807, 13408957, 26864282, 53653539, 107428471, 214660524, 429638859, 858763489, 1718359018, 3435371767
OFFSET
0,3
COMMENTS
Counts closed walks of length n at the vertex with loop of the graph with adjacency matrix A=[0,1,1,1;1,0,0,0;1,0,0,0;1,0,0,1]. Binomial transform is A099164.
Floretion Algebra Multiplication Program, FAMP Code: 1jesforseq[ (.5'i + .5i' + .5'ii' + .5e)*(.5j' + .5'kk' + .5'ki' + .5e) ], 1vesforseq = A000079(n+2) (Dement)
FORMULA
a(n)=a(n-1)+3a(n-2)-2a(n-3); a(n)=((sqrt(5)-1)/2)^n(3/10+sqrt(5)/10)+((-sqrt(5)-1)/2)^n(3/10-sqrt(5)/10)+2^(n+1)/5; a(n)=sum{k=0..n, (-1)^(n-k)Fib(n-k+1)(2^(k-1)+0^k/2-sum{j=0..k, C(k, j)j(-1)^j})}.
4*a(n+1) - a(n+3) = A039834(n) - Creighton Dement, Feb 25 2005
Contribution from Paul D. Hanna, Jan 02 2009: (Start)
a(n) = Sum_{k=-[n/5]..[n/5]} C(n, [(n-5*k)/2]).
a(n) = 2*Sum_{k=-[n/10]..[n/10]} C(n, [n/2]-5*k) - fibonacci(n+1). (End)
5*a(n) = 2^(n+1) + A061084(n+1), n>0. - R. J. Mathar, Sep 11 2019
MATHEMATICA
CoefficientList[Series[(1 - 2 x^2)/((1 - 2 x) (1 + x - x^2)), {x, 0, 33}], x] (* Michael De Vlieger, Sep 14 2022 *)
PROG
(PARI) a(n)=sum(k=-n\5, n\5, binomial(n, (n-5*k)\2)) \\ Paul D. Hanna, Jan 02 2009
(PARI) a(n)=-fibonacci(n+1)+2*sum(k=-n\10, n\10, binomial(n, n\2-5*k)) \\ Paul D. Hanna, Jan 02 2009
CROSSREFS
Cf. A039834.
Sequence in context: A054272 A259593 A129016 * A000676 A283823 A263658
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Oct 01 2004
STATUS
approved