login
A034952
Expansion of eta(16z)^4*eta(4z)^2.
1
1, -2, -1, 2, -3, 10, 2, -8, -4, -14, 7, 4, 18, -2, -13, 14, 1, 14, -21, -4, -35, -14, 28, -6, 7, 38, 39, -30, 20, -36, -14, 0, 17, 4, -49, 14, -15, -22, -16, 66, -39, -10, 21, 42, 69, 82, -18, -80, -28, -50, 28, -70, -35, 14, 66, -56, 41, -32, 8, 52, -77, 42, 3, 36, 60
OFFSET
0,2
COMMENTS
Apparently this is the convolution square of A255252. - R. J. Mathar, Feb 22 2021
LINKS
EXAMPLE
q^3-2*q^7-1*q^11+2*q^15-3*q^19+...
MAPLE
nmax := 30;
eta := product(1-q^i, i=1..nmax) ; # eta=A010815
g := subs(q=q^4, eta)^4*eta^2 ;
g := taylor(g, q=0, nmax+1) ;
seq( coeftayl(g, q=0, i), i=0..nmax) ; # R. J. Mathar, Feb 22 2021
CROSSREFS
Cf. A010815.
Sequence in context: A252889 A155004 A176954 * A337549 A306456 A178463
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Feb 09 2000
STATUS
approved