This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A092107 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having exactly k UUU's (triple rises) where U=(1,1). Rows have 1,1,1,2,3,4,5,... entries, respectively. 4
 1, 1, 2, 4, 1, 9, 4, 1, 21, 15, 5, 1, 51, 50, 24, 6, 1, 127, 161, 98, 35, 7, 1, 323, 504, 378, 168, 48, 8, 1, 835, 1554, 1386, 750, 264, 63, 9, 1, 2188, 4740, 4920, 3132, 1335, 390, 80, 10, 1, 5798, 14355, 17028, 12507, 6237, 2200, 550, 99, 11, 1, 15511, 43252, 57816 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Column 0 gives the Motzkin numbers (A001006), column 1 gives A014532. Row sums are the Catalan numbers (A000108). Equal to A171380*B (without the zeros), B = A007318. - Philippe Deléham, Dec 10 2009 LINKS Alois P. Heinz, Rows n = 0..150, flattened FindStat - Combinatorial Statistic Finder, The number of occurrences of the contiguous pattern [.,[.,[.,.]]]. A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924. Aristidis Sapounakis, Panagiotis Tsikouras, Ioannis Tasoulas, Kostas Manes, Strings of Length 3 in Grand-Dyck Paths and the Chung-Feller Property, Electr. J. Combinatorics, 19 (2012), #P2. Yidong Sun, The statistic "number of udu's" in Dyck paths, Discrete Math., 287 (2004), 177-186. FORMULA G.f.: G(t, z) satisfies z(t+z-tz)G^2 - (1-z+tz)G + 1 = 0. Sum_{k=0..n} T(n,k)*x^k = A001405(n), A001006(n), A000108(n), A033321(n) for x = -1, 0, 1, 2 respectively. - Philippe Deléham, Dec 10 2009 EXAMPLE T(5,2) = 5 because we have (U[UU)U]DUDDDD, (U[UU)U]DDUDDD, (U[UU)U]DDDUDD, (U[UU)U]DDDDUD and UD(U[UU)U]DDDD, where U=(1,1), D=(1,-1); the triple rises are shown between parentheses. [1],[1],[2],[4, 1],[9, 4, 1],[21, 15, 5, 1],[51, 50, 24, 6, 1],[127, 161, 98, 35, 7, 1] Triangle starts:      1;      1;      2;      4,    1;      9,    4,    1;     21,   15,    5,    1;     51,   50,   24,    6,    1;    127,  161,   98,   35,    7,    1;    323,  504,  378,  168,   48,    8,    1;    835, 1554, 1386,  750,  264,   63,    9,    1;   2188, 4740, 4920, 3132, 1335,  390,   80,   10,    1;   ... MAPLE b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,       `if`(x=0, 1, expand(b(x-1, y-1, min(t+1, 2))*       `if`(t=2, z, 1) +b(x-1, y+1, 0))))     end: T:= n->(p->seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 0)): seq(T(n), n=0..12);  # Alois P. Heinz, Mar 11 2014 MATHEMATICA b[x_, y_, t_] := b[x, y, t] = If[y>x || y<0, 0, If[x == 0, 1, Expand[b[x-1, y-1, Min[t+1, 2]]*If[t == 2, z, 1] + b[x-1, y+1, 0]]]]; T[n_] := Function[{p}, Table[ Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 0]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 29 2015, after Alois P. Heinz *) CROSSREFS Cf. A000108, A001006, A001405, A007318, A014532, A033321, A171380, A243752, A243753. Sequence in context: A174135 A182903 A169840 * A114489 A101974 A097607 Adjacent sequences:  A092104 A092105 A092106 * A092108 A092109 A092110 KEYWORD nonn,tabf AUTHOR Emeric Deutsch, Mar 29 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.