login
A092110
Primes p such that 2p+3 and 2p-3 are both prime.
6
5, 7, 13, 17, 43, 53, 67, 97, 113, 127, 137, 157, 167, 193, 223, 283, 487, 547, 563, 613, 617, 643, 647, 743, 773, 937, 1033, 1187, 1193, 1277, 1427, 1453, 1483, 1543, 1583, 1627, 1663, 1733, 1847, 2027, 2143, 2297, 2393, 2437, 2467, 2477, 2503, 2617, 2843
OFFSET
1,1
COMMENTS
Intersection of A023204 and A063908.
All numbers in this sequence end with 3 or 7 (except the first one, which is 5). See A136191 or A136192. - Carlos Alves, Dec 20 2007
LINKS
EXAMPLE
From K. D. Bajpai, Sep 08 2020: (Start)
7 is a term because 2*7 + 3 = 17 and 2*7 - 3 = 11 are both prime.
13 is a term because 2*13 + 3 = 29 and 2*13 - 3 = 23 are both prime.
(End)
MAPLE
select(p -> isprime(p) and isprime(2*p+3) and isprime(2*p-3), [seq(2*k+1, k=1..1000)]); # K. D. Bajpai, Sep 08 2020
MATHEMATICA
Select[Prime@Range@1000, PrimeQ[2#-3]&&PrimeQ[2#+3]&] (* Vladimir Joseph Stephan Orlovsky, Apr 25 2011 *)
PROG
(Magma) [p: p in PrimesUpTo(10000)|IsPrime(2*p-3) and IsPrime(2*p+3)] // Vincenzo Librandi, Nov 16 2010
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Zak Seidov, Feb 21 2004
STATUS
approved