login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A233583 Coefficients of the generalized continued fraction expansion e = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))). 12
2, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

For more details on Blazys' expansion, see A233582.

This sequence matches that of natural numbers (A000027), offset by 1, with two different starting terms.

LINKS

Robert G. Wilson v, Table of n, a(n) for n = 1..1000

S. Sykora, Blazys' Expansions and Continued Fractions, Stans Library, Vol.IV, 2013, DOI 10.3247/sl4math13.001

S. Sykora, PARI/GP scripts for Blazys expansions and fractions, OEIS Wiki

FORMULA

e = 2+2/(2+2/(2+2/(3+3/(4+4/(5+...))))).

MATHEMATICA

BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[E, 80] (* Robert G. Wilson v, May 22 2014 *)

PROG

(PARI) bx(x, nmax)={local(c, v, k); // Blazys expansion function

v = vector(nmax); c = x; for(k=1, nmax, v[k] = floor(c); c = v[k]/(c-v[k]); ); return (v); }

bx(exp(1), 100) // Execution; use high real precision

CROSSREFS

Cf. A000027 (natural numbers), A001113 (number e).

Cf. Blazys' expansions: A233582 (Pi), A233584, A233585, A233586, A233587 and Blazys' continued fractions: A233588, A233589, A233590, A233591.

Sequence in context: A051918 A174740 A163801 * A029049 A094983 A238218

Adjacent sequences:  A233580 A233581 A233582 * A233584 A233585 A233586

KEYWORD

nonn,easy

AUTHOR

Stanislav Sykora, Jan 06 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 22 12:56 EDT 2017. Contains 290948 sequences.