login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A233586 Coefficients of the generalized continued fraction expansion of twice the Euler constant, 2*gamma = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))). 10
1, 6, 12, 19, 63, 263, 856, 2632, 7714, 9683, 888970, 1200867, 1691244, 2350415, 3433770, 4482812, 17544235, 48509602, 53801529, 114221223, 124712727, 997393454, 16681741997, 17954856574, 105651203040 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For more details on Blazys' expansions, see A233582.

LINKS

Stanislav Sykora, Table of n, a(n) for n = 1..670

S. Sykora, Blazys' Expansions and Continued Fractions, Stans Library, Vol.IV, 2013, DOI 10.3247/sl4math13.001

S. Sykora, PARI/GP scripts for Blazys expansions and fractions, OEIS Wiki

FORMULA

2*gamma = 1+1/(6+6/(12+12/(19+19/(63+63/(263+...))))).

MATHEMATICA

BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[2 EulerGamma, 29] (* Robert G. Wilson v, May 22 2014 *)

PROG

(PARI) bx(x, nmax)={local(c, v, k); // Blazys expansion function

v = vector(nmax); c = x; for(k=1, nmax, v[k] = floor(c); c = v[k]/(c-v[k]); ); return (v); }

bx(2*Euler, 670) // Execution; use very high real precision

CROSSREFS

Cf. A001620 (gamma).

Cf. Blazys' expansions: A233582 (Pi), A233583 (e), A233584 (sqrt(e)), A233585 (1/gamma), A233587 and Blazys' continued fractions: A233588, A233589, A233590, A233591.

Sequence in context: A087883 A218438 A162416 * A235268 A105455 A246198

Adjacent sequences:  A233583 A233584 A233585 * A233587 A233588 A233589

KEYWORD

nonn

AUTHOR

Stanislav Sykora, Jan 06 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 23 18:12 EDT 2017. Contains 288668 sequences.