This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003516 Binomial coefficients C(2n+1, n-2). (Formerly M4417) 11
 1, 7, 36, 165, 715, 3003, 12376, 50388, 203490, 817190, 3268760, 13037895, 51895935, 206253075, 818809200, 3247943160, 12875774670, 51021117810, 202112640600, 800472431850, 3169870830126, 12551759587422 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS a(n) = number of royal paths (A006318) from (0,0) to (n,n) with exactly one diagonal step off the line y=x. - David Callan, Mar 25 2004 a(n) = the total number of DDUU's in all Dyck (n+2)-paths. - David Scambler, May 03 2013 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS G. C. Greubel, Table of n, a(n) for n = 2..1000 Milan Janjic, Two Enumerative Functions M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Article 12.3.3, 2012. - From N. J. A. Sloane, Sep 16 2012 FORMULA G.f.: 32*x^2/(((sqrt(1-4*x)+1)^5)*(sqrt(1-4*x))). - Marco A. Cisneros Guevara, Jul 18 2011 a(n) = Sum_{k=0,..,n-2} binomial(n+k+2,k). - Arkadiusz Wesolowski, Apr 02 2012 (n+3)*(n-2)*a(n) = 2*n*(2*n+1)*a(n-1). - R. J. Mathar, Oct 13 2012 G.f.: x^2*c(x)^5/sqrt(1-4*x) = ((-1 + 2*x) + (1 - 3*x + x^2) * c(x))/(x^2*sqrt(1-4*x)), with c(x) the o.g.f. of the Catalan numbers A000108. See the W. Lang link under A115139 for powers of c. - Wolfdieter Lang, Sep 10 2016 a(n) ~ 2^(2*n+1)/sqrt(Pi*n). - Ilya Gutkovskiy, Sep 10 2016 EXAMPLE For n=4, C(2*4+1,4-2) = C(9,2) = 9*8/2 = 36, so a(4) = 36. - Michael B. Porter, Sep 10 2016 MATHEMATICA CoefficientList[ Series[ 32/(((Sqrt[1 - 4 x] + 1)^5)*Sqrt[1 - 4 x]), {x, 0, 21}], x] (* Robert G. Wilson v, Aug 08 2011 *) Table[Binomial[2*n +1, n-2], {n, 2, 50}] (* G. C. Greubel, Jan 23 2017 *) PROG (MAGMA) [ Binomial(2*n+1, n-2): n in [2..150] ]; // Vincenzo Librandi, Apr 13 2011 CROSSREFS Diagonal 6 of triangle A100257. Third unsigned column (s=2) of A113187. - Wolfdieter Lang, Oct 18 2012 Cf. triangle A114492 - Dyck paths with k DDUU's. Sequence in context: A026018 A085354 A051198 * A095931 A292486 A026856 Adjacent sequences:  A003513 A003514 A003515 * A003517 A003518 A003519 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.