login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030053 a(n) = binomial(2n+1,n-3). 6
1, 9, 55, 286, 1365, 6188, 27132, 116280, 490314, 2042975, 8436285, 34597290, 141120525, 573166440, 2319959400, 9364199760, 37711260990, 151584480450, 608359048206, 2438362177020, 9762479679106, 39049918716424, 156077261327400, 623404249591760 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,2

COMMENTS

Number of UUUUUU's in all Dyck (n+3)-paths. - David Scambler, May 03 2013

LINKS

T. D. Noe, Table of n, a(n) for n = 3..200

Milan Janjic, Two Enumerative Functions

Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Article 12.3.3, 2012. - From N. J. A. Sloane, Sep 16 2012.

FORMULA

G.f.: x^3*128/((1-sqrt(1-4*x))^7*sqrt(1-4*x))+(-1/x^4+5/x^3-6/x^2+1/x). - Vladimir Kruchinin, Aug 11 2015

EXAMPLE

G.f. = x^3 + 9*x^4 + 55*x^5 + 286*x^6 + 1365*x^7 + 6188*x68 + ...

MAPLE

seq((count(Composition(2*n), size=n-3)), n=4..24); # Zerinvary Lajos, May 03 2007

MATHEMATICA

Table[Binomial[2*n + 1, n - 3], {n, 3, 20}] (* T. D. Noe, Apr 03 2014 *)

Rest[Rest[Rest[CoefficientList[Series[128 x^3 / ((1 - Sqrt[1 - 4 x])^7 Sqrt[1 - 4 x]) + (-1 / x^4 + 5 / x^3 - 6 / x^2 + 1 / x), {x, 0, 40}], x]]]] (* Vincenzo Librandi, Aug 11 2015 *)

PROG

(PARI) a(n) = binomial(2*n+1, n-3); \\ Joerg Arndt, May 08 2013

(MAGMA) [Binomial(2*n+1, n-3): n in [3..30]]; // Vincenzo Librandi, Aug 11 2015

CROSSREFS

Diagonal 8 of triangle A100257.

Cf. A113187 (unsigned fourth column).

Sequence in context: A263478 A016269 A005770 * A072844 A026857 A244650

Adjacent sequences:  A030050 A030051 A030052 * A030054 A030055 A030056

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 24 00:27 EST 2017. Contains 295164 sequences.