login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083207 Zumkeller or integer-perfect numbers: numbers n whose divisors can be partitioned into two disjoint sets with equal sum. 109
6, 12, 20, 24, 28, 30, 40, 42, 48, 54, 56, 60, 66, 70, 78, 80, 84, 88, 90, 96, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 150, 156, 160, 168, 174, 176, 180, 186, 192, 198, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264, 270, 272 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The 229026 Zumkeller numbers less than 10^6 have a maximum difference of 12. This leads to the conjecture that any 12 consecutive numbers include at least one Zumkeller number. There are 1989 odd Zumkeller numbers less than 10^6; they are exactly the odd abundant numbers that have even abundance, A174865. - T. D. Noe, Mar 31 2010
For k >= 0, numbers of the form 18k + 6 and 18k + 12 are terms (see Remark 2.3. in Somu et al., 2023). Corollary: The maximum difference between any two consecutive terms is 12. - Ivan N. Ianakiev, Jan 02 2024
All 205283 odd abundant numbers less than 10^8 that have even abundance are Zumkeller numbers. - T. D. Noe, Nov 14 2010
Except for 1 and 2, all primorials (A002110) are Zumkeller numbers (follows from Fact 6 in the Rao/Peng paper). - Ivan N. Ianakiev, Mar 23 2016
Supersequence of A111592 (follows from Fact 3 in the Rao/Peng paper). - Ivan N. Ianakiev, Mar 20 2017
Conjecture: Any 4 consecutive terms include at least one number k such that sigma(k)/2 is also a Zumkeller number (verified for the first 10^5 Zumkeller numbers). - Ivan N. Ianakiev, Apr 03 2017
LeVan studied these numbers using the equivalent definition of numbers n such that n = Sum_{d|n, d<n} alpha(d)*d, where alpha(d) is either 1 or -1, and named them "integer-perfect numbers". She also named the primitive Zumkeller numbers (A180332) "minimal integer-perfect numbers". - Amiram Eldar, Dec 20 2018
The numbers 3 * 2^k for k > 0 are all Zumkeller numbers: half of one such partition is {3*2^k, 3*2^(k-2), ...}, replacing 3 with 2 if it appears. With this and the lemma that the product of a Zumkeller number and a number coprime to it is again a Zumkeller number (see A179527), we have that all numbers divisible by 6 but not 9 (or numbers congruent to 6 or 12 modulo 18) are Zumkeller numbers, proving that the difference between consecutive Zumkeller numbers is at most 12. - Charlie Neder, Jan 15 2019
Improvements on the previous comment: 1) For every integer q > 0, every odd integer r > 0 and every integer s > 0 relatively prime to 6, the integer 2^q*3^r*s is a Zumkeller number, and therefore 2) there exist Zumkeller numbers divisible by 9 (such as 54, 90, 108, 126, etc.). - Ivan N. Ianakiev, Jan 16 2020
Conjecture: If d > 1, d|k and tau(d)*sigma(d) = k, then k is a Zumkeller number. - Ivan N. Ianakiev, Apr 24 2020
REFERENCES
Marijo O. LeVan, Integer-perfect numbers, Journal of Natural Sciences and Mathematics, Vol. 27, No. 2 (1987), pp. 33-50.
Marijo O. LeVan, On the order of nu(n), Journal of Natural Sciences and Mathematics, Vol. 28, No. 1 (1988), pp. 165-173.
J. Sandor and B. Crstici, Handbook of Number Theory, II, Springer Verlag, 2004, chapter 1.10, pp. 53-54.
LINKS
M. Basher, k-Zumkeller labeling of super subdivision of some graphs, J. Egyptian Math. Soc. (2021) Vol. 29, No. 12.
Hussein Behzadipour, Two-layered numbers, arXiv:1812.07233 [math.NT], 2018.
K. P. S. Bhaskara Rao and Yuejian Peng, On Zumkeller Numbers, arXiv:0912.0052 [math.NT], 2009.
K. P. S. Bhaskara Rao and Yuejian Peng, On Zumkeller Numbers, Journal of Number Theory, Volume 133, Issue 4, April 2013, pp. 1135-1155.
Farid Jokar, On the difference between Zumkeller numbers, arXiv:1902.02168 [math.NT], 2019.
Farid Jokar, On k-layered numbers and some labeling related to k-layered numbers, arXiv:2003.11309 [math.NT], 2020.
Farid Jokar, On k-layered numbers, arXiv:2207.09053 [math.NT], 2022.
Peter Luschny, Zumkeller Numbers.
Pankaj Jyoti Mahanta, Manjil P. Saikia, and Daniel Yaqubi, Some properties of Zumkeller numbers and k-layered numbers, arXiv:2008.11096 [math.NT], 2020.
Pankaj Jyoti Mahanta, Manjil P. Saikia, and Daniel Yaqubi, Some properties of Zumkeller numbers and k-layered numbers, Journal of Number Theory (2020).
Sai Teja Somu, Andrzej Kukla, and Duc Van Khanh Tran, Some Results on Zumkeller Numbers, arXiv:2310.14149 [math.NT], 2023.
Reinhard Zumkeller, Illustration of initial terms
FORMULA
A083206(a(n)) > 0.
A083208(n) = A083206(a(n)).
A179529(a(n)) = 1. - Reinhard Zumkeller, Jul 19 2010
EXAMPLE
Given n = 48, we can partition the divisors thus: 1 + 3 + 4 + 6 + 8 + 16 + 24 = 2 + 12 + 48, therefore 48 is a term (A083206(48) = 5).
MAPLE
with(numtheory): with(combstruct):
is_A083207 := proc(n) local S, R, Found, Comb, a, s; s := sigma(n);
if not(modp(s, 2) = 0 and n * 2 <= s) then RETURN(false) fi;
S := s / 2 - n; R := select(m -> m <= S, divisors(n)); Found := false;
Comb := iterstructs(Combination(R)):
while not finished(Comb) and not Found do
Found := add(a, a = nextstruct(Comb)) = S
od; Found end:
A083207_list := upto -> select(is_A083207, [$1..upto]):
A083207_list(272); # Peter Luschny, Dec 14 2009, updated Aug 15 2014
MATHEMATICA
ZumkellerQ[n_] := Module[{d=Divisors[n], t, ds, x}, ds = Plus@@d; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; Select[Range[1000], ZumkellerQ] (* T. D. Noe, Mar 31 2010 *)
znQ[n_]:=Length[Select[{#, Complement[Divisors[n], #]}&/@Most[Rest[ Subsets[ Divisors[ n]]]], Total[#[[1]]]==Total[#[[2]]]&]]>0; Select[Range[300], znQ] (* Harvey P. Dale, Dec 26 2022 *)
PROG
(Haskell)
a083207 n = a083207_list !! (n-1)
a083207_list = filter (z 0 0 . a027750_row) $ [1..] where
z u v [] = u == v
z u v (p:ps) = z (u + p) v ps || z u (v + p) ps
-- Reinhard Zumkeller, Apr 18 2013
(PARI) part(n, v)=if(n<1, return(n==0)); forstep(i=#v, 2, -1, if(part(n-v[i], v[1..i-1]), return(1))); n==v[1]
is(n)=my(d=divisors(n), s=sum(i=1, #d, d[i])); s%2==0 && part(s/2-n, d[1..#d-1]) \\ Charles R Greathouse IV, Mar 09 2014
(Python)
from sympy import divisors
from sympy.combinatorics.subsets import Subset
for n in range(1, 10**3):
d = divisors(n)
s = sum(d)
if not s % 2 and max(d) <= s/2:
for x in range(1, 2**len(d)):
if sum(Subset.unrank_binary(x, d).subset) == s/2:
print(n, end=', ')
break
# Chai Wah Wu, Aug 13 2014
(Python)
from sympy import divisors
import numpy as np
A083207 = []
for n in range(2, 10**3):
d = divisors(n)
s = sum(d)
if not s % 2 and 2*n <= s:
d.remove(n)
s2, ld = int(s/2-n), len(d)
z = np.zeros((ld+1, s2+1), dtype=int)
for i in range(1, ld+1):
y = min(d[i-1], s2+1)
z[i, range(y)] = z[i-1, range(y)]
z[i, range(y, s2+1)] = np.maximum(z[i-1, range(y, s2+1)], z[i-1, range(0, s2+1-y)]+y)
if z[i, s2] == s2:
A083207.append(n)
break
# Chai Wah Wu, Aug 19 2014
(Sage)
def is_Zumkeller(n):
s = sigma(n)
if not (2.divides(s) and n*2 <= s): return False
S = s // 2 - n
R = (m for m in divisors(n) if m <= S)
return any(sum(c) == S for c in Combinations(R))
A083207_list = lambda lim: [n for n in (1..lim) if is_Zumkeller(n)]
print(A083207_list(272)) # Peter Luschny, Sep 03 2018
CROSSREFS
Complement of A083210.
Subsequence of A023196.
A118372 is a subsequence.
Sequence in context: A105455 A345919 A246198 * A370205 A304391 A145278
KEYWORD
nonn,nice
AUTHOR
Reinhard Zumkeller, Apr 22 2003
EXTENSIONS
Name improved by T. D. Noe, Mar 31 2010
Name "Zumkeller numbers" added by N. J. A. Sloane, Jul 08 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 21:09 EDT 2024. Contains 371798 sequences. (Running on oeis4.)