

A293482


The number of 5th powers in the multiplicative group modulo n.


6



1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 2, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 2, 22, 8, 4, 12, 18, 12, 28, 8, 6, 16, 4, 16, 24, 12, 36, 18, 24, 16, 8, 12, 42, 4, 24, 22, 46, 16, 42, 4, 32, 24, 52, 18, 8, 24, 36, 28, 58, 16, 12, 6, 36, 32, 48, 4, 66, 32, 44, 24, 14, 24, 72, 36, 8, 36, 12, 24, 78, 32, 54, 8, 82, 24
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

The size of the set of numbers j^5 mod n, gcd(j,n)=1, 1 <= j <= n.
A000010(n) / a(n) is another multiplicative integer sequence.


LINKS

R. J. Mathar, Table of n, a(n) for n = 1..7548
R. J. Mathar, Size of the set of residues of integer powers of fixed exponent, (2017).


FORMULA

Conjecture: a(2^e) = 1 for e <= 1; a(2^e) = 2^(e1) for e >= 1; a(5)=4; a(5^e) = 4*5^(e2) for e > 1; a(p^e) = (p1)*p^(e1) for p == {2,3,4} (mod 5); a(p^e) = (p1)*p^(e1)/5 for p == 1 (mod 5).  R. J. Mathar, Oct 13 2017
a(n) = A000010(n)/A319099(n). This implies that the conjecture above is true.  Jianing Song, Nov 10 2019


MAPLE

A293482 := proc(n)
local r, j;
r := {} ;
for j from 1 to n do
if igcd(j, n)= 1 then
r := r union { modp(j &^ 5, n) } ;
end if;
end do:
nops(r) ;
end proc:
seq(A293482(n), n=1..120) ;


CROSSREFS

The number of kth powers in the multiplicative group modulo n: A046073 (k=2), A087692 (k=3), A250207 (k=4), this sequence (k=5), A293483 (k=6), A293484 (k=7), A293485 (k=8).
Cf. A052274, A319099, A000010.
Sequence in context: A262550 A077651 A004085 * A086296 A096504 A277906
Adjacent sequences: A293479 A293480 A293481 * A293483 A293484 A293485


KEYWORD

nonn,mult


AUTHOR

R. J. Mathar, Oct 10 2017


STATUS

approved



