login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A177787
Number of paths from (0,0) to (n+2,n) using only up and right steps and avoiding two or more consecutive moves up or three or more consecutive moves right.
7
2, 5, 10, 18, 30, 47, 70, 100, 138, 185, 242, 310, 390, 483, 590, 712, 850, 1005, 1178, 1370, 1582, 1815, 2070, 2348, 2650, 2977, 3330, 3710, 4118, 4555, 5022, 5520, 6050, 6613, 7210, 7842, 8510, 9215, 9958, 10740, 11562, 12425, 13330, 14278, 15270
OFFSET
1,1
COMMENTS
Strings of length 2n+2 over the alphabet {U, R} with n Rs and avoiding UU or RRR as substrings.
Also number of binary words with 3 1's and n 0's that do not contain the substring 101. a(2) = 5: 00111, 10011, 11001, 11100, 01110. - Alois P. Heinz, Jul 18 2013
Let (b(n)) be the p-INVERT of A010892 using p(S) = 1 - S^2; then b(n) = a(n+1) for n >= 0. See A292301. - Clark Kimberling, Sep 30 2017
From Gus Wiseman, Oct 13 2022: (Start)
Also the number of integer compositions of n+3 with half-alternating sum n-1, where we define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ... For example, the a(1) = 2 through a(4) = 10 compositions are:
(112) (122) (132)
(1111) (212) (222)
(1211) (312)
(2111) (1311)
(11111) (2211)
(3111)
(11112)
(12111)
(21111)
(111111)
A001700/A138364 = compositions with alternating sum 0, ranked by A344619.
A357621 = half-alternating sum of standard compositions, reverse A357622.
A357641 = compositions with half-alternating sum 0, ranked by A357625.
(End)
LINKS
Ângela Mestre, José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
FORMULA
a(n) = 1/6 * n (11 + n^2).
From R. J. Mathar, May 22 2010: (Start)
a(n) = A140226(n)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x*(2-3*x+2*x^2)/(x-1)^4. (End)
MAPLE
a:= n-> n/6*(11+n^2): seq(a(n), n=1..40);
MATHEMATICA
CoefficientList[Series[(2-3*x+2*x^2)/(x-1)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 04 2012 *)
PROG
(Magma) I:=[2, 5, 10, 18]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jul 04 2012
CROSSREFS
First differences of A227161. - Alois P. Heinz, Jul 18 2013
Sequence in context: A354246 A025223 A348919 * A104688 A117485 A084835
KEYWORD
nonn,easy
AUTHOR
Shanzhen Gao, May 13 2010
EXTENSIONS
More terms from R. J. Mathar, May 22 2010
STATUS
approved