login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A286724 Triangle read by rows. A generalization of unsigned Lah numbers, called L[2,1]. 5
1, 2, 1, 8, 8, 1, 48, 72, 18, 1, 384, 768, 288, 32, 1, 3840, 9600, 4800, 800, 50, 1, 46080, 138240, 86400, 19200, 1800, 72, 1, 645120, 2257920, 1693440, 470400, 58800, 3528, 98, 1, 10321920, 41287680, 36126720, 12042240, 1881600, 150528, 6272, 128, 1, 185794560, 836075520, 836075520, 325140480, 60963840, 6096384, 338688, 10368, 162, 1, 3715891200, 18579456000, 20901888000, 9289728000, 2032128000, 243855360, 16934400, 691200, 16200, 200, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

These generalized unsigned Lah numbers are the instance L[2,1] of the Sheffer triangles called L[d,a], with integers d >= 1 and integers 0 <= a < d with gcd(d,a) = 1. The standard unsigned Lah numbers are L[1,0] = A271703.

The Sheffer structure of L[d,a] is ((1 - d*t)^(-2*a/d), t/(1 - d*t)). This follows from the defining property

  risefac[d,a](x, n) = Sum_{m=0..n} L[d,a](n, m)*fallfac[d,a](x, m), where risefac[d,a](x, n):= Product_{0..n-1} (x  + (a+d*j)) for n >= 1 and risefac[d,a](x, 0) := 1, and fallfac[d,a](x, n):= Product_{0..n-1} (x - (a+d*j)) = for n >= 1 and fallfac[d,a](x, 0) := 1. Such rising and falling factorials arise in the generalization of Stirling numbers of both kinds S2[d,a] and S1[d,a]. See the Peter Bala link under A143395 for these falling factorials called there [t;a,b,c]_n with t=x, a=d, b=0, c=a.

In matrix notation: L[d,a] = S1phat[d,a].S2hat[d,a] with the unsigned scaled Stirling1 and the scaled Stirling2 generalizations with Sheffer structures S1phat[d,a] = ((1 - d*t)^(-a/d), -(1/d)*(log(1 - d*t))) and S2hat[d,a] = (exp(a*t), (1/d)*(exp(d*t) - 1). See, e.g., S1phat[2,1] = A028338 and S2hat[2,1] = A039755.

The a- and z-sequences for these Sheffer matrices have e.g.f.s 1 + d*t and ((1 + d*t)/t)*(1 - (1 + d*t)^(-2*a/d)), respectively. See a W. Lang link under A006232 for these types of sequences.

E.g.f. of row polynomials R[d,a](n, x) := Sum_{m=0..n} L[d,a](n, m)*x^m

  (1 - d*x)^(-2*a/d)*exp(t*x/(1 - d*x)) (this is the e.g.f. for the triangle).

E.g.f. of column m: (1 - d*t)^(-2*a/d)*(t/(1 - d*t))^m/m, m >= 0.

Meixner type identity for (monic) row polynomials: (D_x/(1 + d*D_x)) * R[d,a](n, x) = n*R[d,a](n-1, x), n >= 1, with R[d,a](0, x) = 1. The series in the differentiations D_x = d/dx terminates.

General Sheffer recurrence for row polynomials (see the Roman reference, p. 50, Corollary 3.7.2, rewritten for the present Sheffer notation):

  R[d,a](n, x) = [(2*a+x)*1 + 2*d*(a + x)*D_x + d^2*x*(D_x)^2]*R[d,a](n-1, x), n >= 1, with R[d,a](0, x) = 1.

The inverse matrix L^(-1)[d,a] is Sheffer (g[d,a](-t), -f[d,a](-t)) with L[d,a] Sheffer (g[d,a](t), f[d,a](t)) from above. This means (see the column e.g.f. of Sheffer matrices) that L^(-1)[d,a](n, m) = (-1)^(n-m)*L[d,a](n, m). Therefore, the recurrence relations can easily be rewritten for L^(-1)[d,a] by replacing a -> -a and d -> -d.

fallfac[d,a](x, n) = Sum_{m=0..n} L^(-1)[d,a](n, m)*risefac[d,a](x, m), n >= 0.

From Wolfdieter Lang, Aug 12 2017: (Start)

The Sheffer row polynomials R[d,a](n, x) belong to the Boas-Buck class and satisfy therefore the Boas-Buck identity (see the reference, and we use the notation of Rainville, Theorem 50, p. 141, adapted to an exponential generating function) (E_x - n*1)*R[d,a](n, x) = - n*(2*a*1 + d*E_x) * Sum_{k=0..n-1} d^k*R(d,a;n-1-k,x)/(n-1-k)!, with E_x = x*d/dx (Euler operator).

This implies a recurrence for the sequence of column m: L[d,a](n, m) = (n!*(2*a + d*m)/(n-m))*Sum_{p=0..n-1-m} d^p*L[d,a](n-1-p, m)/(n-1-p)!, for n > m>=0, and input L[d,a](m, m) = 1. For the present [d,a] = [2,1] instance see the formula and example sections. (End)

From Wolfdieter Lang, Sep 14 2017: (Start)

The diagonal sequences are 2^D*D!*(binomial(m+D, m))^2, m >= 0, for D >= 0 (main diagonal D = 0). From the o.g.f.s obtained via Lagrange's theorem. See the second W. Lang link below for the general Sheffer case.

The o.g.f. of the diagonal D sequence is 2^D*D!*Sum_{m=0..D} A008459(D, m)*x^m /(1- x)^(2*D + 1),  D >= 0. (End)

REFERENCES

Ralph P. Boas, jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).

Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.

Steven Roman, The Umbral Calculus, Academic press, Orlando, London, 1984, p. 50.

LINKS

Table of n, a(n) for n=0..65.

P. Bala, The white diamond product of power series

Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli Numbers, arXiv:math/1707.04451 [math.NT], July 2017.

Wolfdieter Lang, On Generating functions of Diagonal Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.

FORMULA

T(n, m) = L[2,1](n, m) = Sum_{k=m..n} A028338(n, k)*A039755(k, m).

Three term recurrence for column elements with m >= 1: T(n, m) = (n/m)*T(n-1, m-1) + 2*n*T(n-1, m) with T(n, m) = 0 for n < m and the column m = 0 is T(n, 0) = (2*n)!! = n*2^n = A000165(n). (From the a- and z-sequences {1, 2, repeat(0)} and {2, repeat(0)}, respectively.)

Four term recurrence: T(n, m) = T(n-1, m-1) + 2*(2*n-1)*T(n-1, m) - 4*(n-1)^2*T(n-2, m), n >= m >= 0, with T(0, 0) = 1, T(-1, m) = 0, T(n, -1) = 0 and T(n, m) = 0 if n < m.

E.g.f. of row polynomials R(n, x) = R[2,1](n, x) (i.e., e.g.f. of the triangle): (1/(1-2*t))*exp(x*t/(1-2*t)).

E.g.f. of column m sequences: (t^m/(1-2*t)^(m+1))/m!, m >= 0.

Meixner type identity: Sum_{k=0..n-1} (-1)^k*2^k*(D_x)^(k+1)*R(n, x) = n*R(n-1, x), n >= 1, with R(0, x) = 1 and D_x = d/dx.

Sheffer recurrence: R(n, x) = [(2 + x)*1 + 4*(1 + x)*D_x + 4*x*(D_x)^2]*R(n-1, x), n >= 1, and R(0, x) = 1.

Boas-Buck recurrence for column m (see a comment above): T(n, m) = (2*n!*(1 + m)/(n-1))*Sum_{p=0..n-1-m} 2^p*T(n-1-p, m)/(n-1-p)!, for n > m >= 0, and input T(m, m) = 1. - Wolfdieter Lang, Aug 12 2017

Explicit form (from the diagonal sequences with the o.g.f.s given as a comment above): T(n, m) = 2^(n-m)*(n-m)!*(binomial(n, n-m))^2 for n >= m >= 0. - Wolfdieter Lang, Sep 23 2017

Let R(n,x) denote the n-th row polynomial. Then x^n*R(n,x) = x^n o x^n, where o denotes the deformed Hadamard product of power series defined in Bala, Section 3.1. - Peter Bala, Jan 18 2018

EXAMPLE

The triangle T(n, m) begins:

n\m        0         1         2         3        4       5      6     7   8 9

0:         1

1:         2         1

2:         8         8         1

3:        48        72        18         1

4:       384       768       288        32        1

5:      3840      9600      4800       800       50       1

6:     46080    138240     86400     19200     1800      72      1

7:    645120   2257920   1693440    470400    58800    3528     98     1

8:  10321920  41287680  36126720  12042240  1881600  150528   6272   128   1

9: 185794560 836075520 836075520 325140480 60963840 6096384 338688 10368 162 1

...

From Wolfdieter Lang, Aug 12 2017: (Start)

Recurrence for column elements with m >= 1, and input column m = 0: T(3, 2) = (3/2)*T(2, 1) + 2*3*T(2, 2) = (3/2)*8 + 6 = 18.

Four term recurrence: T(3, 2) = T(2, 1) + 2*5*T(2, 2) - 4*2^2*T(1, 2) = 8 + 10 + 0 = 18.

Meixner type identity, n=2: 2*R(1, x) = (D_x - 2*(D_x)^2)*R(2, x), 2*(2 + x) = (8 + 2*x) - 2*2.

Sheffer recurrence: R(2, x) = (2 + x)*(2 + x) + 4*(1 + x)*1 + 0 = 8 + 8*x + x^2.

Boas-Buck recurrence for column m = 2 and n = 4: T(4, 2) = (2*4!*3/2)*(1*T(3, 2)/3! + 2*T(2, 2)/2!) = 4!*3*(18/3! + 1) = 288. (End)

Diagonal sequence D = 1: o.g.f. 2*1!*(1 + 1*x)/(1- x)^3 generating

{2*(binomial(m+1, m))^2}_{m >= 0} = {2, 8, 18, 32, ...}. - Wolfdieter Lang, Sep 14 2017

MATHEMATICA

T[ n_, k_] := Coefficient[ Integrate[ Exp[-x^2 - y x] HermiteH[n, x]^2, {x, -Infinity, Infinity}] / (Sqrt[Pi] Exp[y^2 / 4]), y, 2 k]; (* Michael Somos, Sep 27 2017 *)

CROSSREFS

Cf. A006232, A025167, A028338, A039755, A143395, A271703.

Column sequences (no leading zeros): A000165, A014479, A286725.

Diagonal sequences: A000012, 2*A000290(m+1), 8*A000537(n+1), 48*A001249, 384*A288876. - Wolfdieter Lang, Sep 14 2017

Row sums are A025167. - Michael Somos, Sep 27 2017

Sequence in context: A271316 A145901 A321369 * A123516 A193604 A016446

Adjacent sequences:  A286721 A286722 A286723 * A286725 A286726 A286727

KEYWORD

nonn,tabl,easy

AUTHOR

Wolfdieter Lang, Jun 16 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 25 04:15 EDT 2019. Contains 321457 sequences. (Running on oeis4.)