login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A064037 Number of walks of length 2n on cubic lattice, starting and finishing at origin and staying in first (nonnegative) octant. 13
1, 3, 24, 285, 4242, 73206, 1403028, 29082339, 640672890, 14818136190, 356665411440, 8874875097270, 227135946200940, 5955171596514900, 159439898653636320, 4347741997166750235, 120493374240909299130, 3387806231071627372590, 96488484001399878973200 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..18.

Nachum Dershowitz, Touchard’s Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.

R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.

James Mallos, A 6-Letter 'DNA' for Baskets with Handles, Mathematics (2019) Vol. 7, No. 2, 165.

G. Xin, Determinant formulas relating to tableaux of bounded height, Adv. Appl. Math. 45 (2010) 197-211.

FORMULA

a(n) = Sum_{j=0..n} C(2n, 2j)*c(j)*c(j+1)*c(n-j) where c(k)=A000108(k).

G.f. is a large expression in terms of hypergeometric functions and sqrt's, see Maple program.  - Mark van Hoeij, Apr 19 2013

a(n) = binomial(2*n,n)*((7*n+11)*A002893(n+1)-(9*n+9)*A002893(n))/(2*(n+1)*(n+2)^2*(n+3)). - Mark van Hoeij, Apr 19 2013

a(n) ~ 2^(2*n - 2) * 3^(2*n + 9/2) / (Pi^(3/2) * n^(9/2)). - Vaclav Kotesovec, Jun 09 2019

D-finite with recurrence: (n+3)*(n+2)*(n+1)*a(n) -4*(2*n-1)*(5*n^2+10*n+3)*a(n-1) +36*(n-1)*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Feb 20 2020

EXAMPLE

a(1)=3 and a(2)=24 since if the possible steps are Right, Left, Up, Down, Forwards and Backwards, then the two-step paths are FB, RL and UD, while the four-step paths are FBFB, FBRL, FBUD, FFBB, FRBL, FRLB, FUBD, FUDB, RFBL, RFLB, RLFB, RLRL, RLUD, RRLL, RUDL, RULD, UDFB, UDRL, UDUD, UFBD, UFDB, URDL, URLD, UUDD.

MAPLE

f := -3*x+(1+sqrt(1-40*x+144*x^2))/4;

H := (1-2*f)*f*hypergeom([1/6, 1/3], [1], 27*(1-2*f)*f^2)^2/sqrt(1+6*f);

r2 := (1-4*x)*(36*x-1)*(1920*x^2+166*x+1)*x^2;

r1 := -(138240*x^4+7776*x^3+200*x^2-92*x-1)*x;

r0 := 19800*x^3+764*x^2-86*x-1;

ogf := (r2*diff(H, x, x)+r1*diff(H, x)+r0*H)/(5760*x^4) + 1/(2*x);

series(ogf, x=0, 30); # Mark van Hoeij, Apr 19 2013

# second Maple program:

a:= proc(n) option remember; `if`(n<2, 2*n+1, ((8*n-4)*(5*n^2+10*n+3)

       *a(n-1)-36*(2*n-1)*(2*n-3)*(n-1)*a(n-2))/((n+1)*(n+2)*(n+3)))

    end:

seq(a(n), n=0..20);  # Alois P. Heinz, Mar 29 2019

MATHEMATICA

Table[Sum[Binomial[2*n, 2*j] * CatalanNumber[j] * CatalanNumber[j+1] * CatalanNumber[n-j], {j, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 09 2019 *)

PROG

(PARI)

C(n, k) = binomial(n, k);

c(n) = binomial(2*n, n)/(n+1);

a(n) = sum(j=0, n, C(2*n, 2*j)*c(j)*c(j+1)*c(n-j));

/* Joerg Arndt, Apr 19 2013 */

CROSSREFS

Cf. A064036. The two- and one-dimensional equivalents are A005568 and A000108.

Sequence in context: A081133 A218223 A276360 * A257453 A128572 A052592

Adjacent sequences:  A064034 A064035 A064036 * A064038 A064039 A064040

KEYWORD

nonn

AUTHOR

Henry Bottomley, Aug 23 2001

EXTENSIONS

Added more terms, Joerg Arndt, Apr 19 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 12:19 EDT 2020. Contains 336276 sequences. (Running on oeis4.)