login
A064038
Numerator of average number of swaps needed to bubble sort a string of n distinct letters.
27
0, 1, 3, 3, 5, 15, 21, 14, 18, 45, 55, 33, 39, 91, 105, 60, 68, 153, 171, 95, 105, 231, 253, 138, 150, 325, 351, 189, 203, 435, 465, 248, 264, 561, 595, 315, 333, 703, 741, 390, 410, 861, 903, 473, 495, 1035, 1081, 564, 588, 1225, 1275, 663, 689, 1431, 1485, 770
OFFSET
1,3
COMMENTS
Denominators are given by the simple periodic sequence [1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, ...] (= A014695) thus we get an average of 1/2, 3/2, 3, 5, 15/2, 21/2, 14, 18, etc. swappings required to bubble sort a string of 2, 3, 4, 5, 6, ... letters.
REFERENCES
E. Reingold, J. Nievergelt and N. Deo, Combinatorial Algorithms, Prentice-Hall, 1977, section 7.1, p. 287.
LINKS
Eric Weisstein's World of Mathematics, Simple Graph.
FORMULA
a(n) = numerator(A001809(n)/(n!)).
a(4n) = A033991(n).
a(4n+1) = A007742(n).
a(4n+2) = A014634(n).
a(4n+3) = A033567(n+1).
a(n+1) = A061041(8*n-4). - Paul Curtz, Jan 03 2011
G.f.: -x^2*(1+4*x^3+x^6) / ( (x-1)^3*(1+x^2)^3 ). - R. J. Mathar, Jan 03 2011
a(n+1) = A060819(n)*A060819(n+1).
a(n+1) = A000217(n)/(period 4:repeat 2,1,1,2=A014695(n+2)=A130658(n+3)).
a(n) = 3*a(n-4) -3*a(n-8) +a(n-12). - Paul Curtz, Mar 04 2011
a(n) = +3*a(n-1) -6*a(n-2) +10*a(n-3) -12*a(n-4) +12*a(n-5) -10*a(n-6) +6*a(n-7) -3*a(n-8) +1*a(n-9). - Joerg Arndt, Mar 04 2011
a(n+1) = A026741(A000217(n)). - Paul Curtz, Apr 04 2011
a(n) = numerator(Sum_{k=0..n-1} k/2). - Arkadiusz Wesolowski, Aug 09 2012
a(n) = n*(n-1)*(3-i^(n*(n-1)))/8, where i=sqrt(-1). - Bruno Berselli, Oct 01 2012, corrected by Vaclav Kotesovec, Aug 09 2022
Sum_{n>=2} 1/a(n) = 4 - Pi/2. - Amiram Eldar, Aug 09 2022
MAPLE
[seq(numer((n*(n-1))/4), n=1..120)];
MATHEMATICA
f[n_] := Numerator[n (n - 1)/4]; Array[f, 56]
f[n_] := n/GCD[n, 4]; Array[f[#] f[# - 1] &, 56]
LinearRecurrence[{3, -6, 10, -12, 12, -10, 6, -3, 1}, {0, 1, 3, 3, 5, 15, 21, 14, 18}, 80] (* Harvey P. Dale, Jan 23 2023 *)
PROG
(PARI) vector(100, n, numerator(n*(n-1)/4)) \\ G. C. Greubel, Sep 21 2018
(Magma) [Numerator(n*(n-1)/4): n in [1..100]]; // G. C. Greubel, Sep 21 2018
CROSSREFS
KEYWORD
easy,nonn,frac,changed
AUTHOR
Antti Karttunen, Aug 23 2001
STATUS
approved