OFFSET
1,3
COMMENTS
Denominators are given by the simple periodic sequence [1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, ...] (= A014695) thus we get an average of 1/2, 3/2, 3, 5, 15/2, 21/2, 14, 18, etc. swappings required to bubble sort a string of 2, 3, 4, 5, 6, ... letters.
REFERENCES
E. Reingold, J. Nievergelt and N. Deo, Combinatorial Algorithms, Prentice-Hall, 1977, section 7.1, p. 287.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
Eric Weisstein's World of Mathematics, Simple Graph.
Index entries for linear recurrences with constant coefficients, signature (3,-6,10,-12,12,-10,6,-3,1).
FORMULA
a(n) = numerator(A001809(n)/(n!)).
a(4n) = A033991(n).
a(4n+1) = A007742(n).
a(4n+2) = A014634(n).
a(4n+3) = A033567(n+1).
a(n+1) = A061041(8*n-4). - Paul Curtz, Jan 03 2011
G.f.: -x^2*(1+4*x^3+x^6) / ( (x-1)^3*(1+x^2)^3 ). - R. J. Mathar, Jan 03 2011
a(n) = 3*a(n-4) -3*a(n-8) +a(n-12). - Paul Curtz, Mar 04 2011
a(n) = +3*a(n-1) -6*a(n-2) +10*a(n-3) -12*a(n-4) +12*a(n-5) -10*a(n-6) +6*a(n-7) -3*a(n-8) +1*a(n-9). - Joerg Arndt, Mar 04 2011
a(n) = numerator(Sum_{k=0..n-1} k/2). - Arkadiusz Wesolowski, Aug 09 2012
a(n) = n*(n-1)*(3-i^(n*(n-1)))/8, where i=sqrt(-1). - Bruno Berselli, Oct 01 2012, corrected by Vaclav Kotesovec, Aug 09 2022
Sum_{n>=2} 1/a(n) = 4 - Pi/2. - Amiram Eldar, Aug 09 2022
MAPLE
[seq(numer((n*(n-1))/4), n=1..120)];
MATHEMATICA
f[n_] := Numerator[n (n - 1)/4]; Array[f, 56]
f[n_] := n/GCD[n, 4]; Array[f[#] f[# - 1] &, 56]
LinearRecurrence[{3, -6, 10, -12, 12, -10, 6, -3, 1}, {0, 1, 3, 3, 5, 15, 21, 14, 18}, 80] (* Harvey P. Dale, Jan 23 2023 *)
PROG
(PARI) vector(100, n, numerator(n*(n-1)/4)) \\ G. C. Greubel, Sep 21 2018
(Magma) [Numerator(n*(n-1)/4): n in [1..100]]; // G. C. Greubel, Sep 21 2018
CROSSREFS
KEYWORD
easy,nonn,frac,changed
AUTHOR
Antti Karttunen, Aug 23 2001
STATUS
approved