login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007742 a(n) = n*(4*n+1). 67
0, 5, 18, 39, 68, 105, 150, 203, 264, 333, 410, 495, 588, 689, 798, 915, 1040, 1173, 1314, 1463, 1620, 1785, 1958, 2139, 2328, 2525, 2730, 2943, 3164, 3393, 3630, 3875, 4128, 4389, 4658, 4935, 5220, 5513, 5814, 6123, 6440, 6765, 7098, 7439, 7788, 8145 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Write 0,1,2,... in a clockwise spiral; sequence gives the numbers that fall on the positive y-axis. (See Example section.)

Central terms of the triangle in A126890. - Reinhard Zumkeller, Dec 30 2006

a(n)*Pi is the total length of 4 points circle center spiral after n rotations. The spiral length at each rotation (L(n)) is A004770. The spiral length ratio rounded down [floor(L(n)/L(1))] is A047497. See illustration in links. - Kival Ngaokrajang, Dec 27 2013

REFERENCES

S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Emilio Apricena, A version of the Ulam spiral

Kival Ngaokrajang, Illustration of 4 points circle center spiral

G. Thimm, Emails to N. J. A. Sloane, Sep. 1994

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: x*(5+3*x)/(1-x)^3. - Michael Somos, Mar 03 2003

a(n) = A033991(-n) = A074378(2*n).

a(n) = floor((n + 1/4)^2). - Reinhard Zumkeller, Feb 20 2010

a(n) = A110654(n) + A173511(n) = A002943(n) - n. - Reinhard Zumkeller, Feb 20 2010

a(n) = 8*n + a(n-1) - 3. - Vincenzo Librandi, Nov 21 2010

Sum_{n>=1} 1/a(n) = Sum_{k>=0} (-1)^k*zeta(2+k)/4^(k+1) = 0.349762131... . - R. J. Mathar, Jul 10 2012

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2, a(0)=0, a(1)=5, a(2)=18. - Philippe Deléham, Mar 26 2013

a(n) = A118729(8n+4). - Philippe Deléham, Mar 26 2013

a(n) = A000217(3*n) - A000217(n). - Bruno Berselli, Sep 21 2016

E.g.f.: (4*x^2 + 5*x)*exp(x). - G. C. Greubel, Jul 17 2017

From Amiram Eldar, Jul 03 2020: (Start)

Sum_{n>=1} 1/a(n) = 4 - Pi/2 - 3*log(2).

Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(2) + log(2) + sqrt(2)*log(1 + sqrt(2)) - 4. (End)

EXAMPLE

Part of the spiral:

.

  64--65--66--67--68

   |

  63  36--37--38--39--40--41--42

   |   |                       |

  62  35  16--17--18--19--20  43

   |   |   |               |   |

  61  34  15   4---5---6  21  44

   |   |   |   |       |   |   |

  60  33  14   3   0   7  22  45

   |   |   |   |   |   |   |   |

  59  32  13   2---1   8  23  46

   |   |   |           |   |   |

  58  31  12--11--10---9  24  47

   |   |                   |   |

  57  30--29--28--27--26--25  48

   |                           |

  56--55--54--53--52--51--50--49

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {0, 5, 18}, 50] (* Vincenzo Librandi, Jan 29 2012 *)

Table[n(4n+1), {n, 0, 50}] (* Harvey P. Dale, Aug 10 2017 *)

PROG

(PARI) a(n)=4*n^2+n

(MAGMA) I:=[0, 5, 18]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012

CROSSREFS

Cf. A033991, A074378.

Sequences from spirals: A001107, A002939, A007742, A033951, A033952, A033953, A033954, A033989, A033990, A033991, A002943, A033996, A033988.

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.

Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.

Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Cf. index to sequences with numbers of the form n*(d*n+10-d)/2 in A140090.

Sequence in context: A220243 A065007 A031428 * A225272 A276819 A236364

Adjacent sequences:  A007739 A007740 A007741 * A007743 A007744 A007745

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 17:27 EST 2020. Contains 338769 sequences. (Running on oeis4.)