login
A190187
Denominator of expression W_n occurring in analysis of bubble sort.
5
1, 1, 3, 6, 15, 90, 630, 720, 45360, 64800, 4989600, 59875200, 778377600, 1556755200, 163459296000, 373621248000, 44460928512000, 800296713216000, 15205637551104000, 3949516247040000, 6386367771463680000, 20071441567457280000, 3231502092360622080000, 5965850016665763840000, 1938901255416373248000000, 7201633234403672064000000
OFFSET
1,3
REFERENCES
D. E. Knuth, The Art of Computer Programming, Vol. 3, Section 5.2.2, p. 129.
LINKS
FORMULA
W_n = Sum_{r=0..(n-1)}( Sum_{s=(r+1)..n} s!*r^(n-s) )/n!.
W_n = denominator(A190194(n)/n!).
EXAMPLE
1, 2, 10/3, 29/6, 97/15, 739/90, 6331/630, 8617/720, 633127/45360, 1037497/64800, ...
MAPLE
W:=proc(n) local t1, r, s;
t1:=add( add(s!*r^(n-s), s=r+1..n), r=0..n-1);
t1/n!;
end;
MATHEMATICA
Denominator[Table[n! + Sum[ Sum[s!*k^(n - s), {s, k + 1, n}], {k, 1, n - 1}]/n!, {n, 1, 50}]] (* G. C. Greubel, Dec 28 2017 *)
PROG
(PARI) for(n=1, 30, print1(denominator(1 + sum(k=1, n-1, sum(s=k+1, n, s!*k^(n-s)))/n!), ", ")) \\ G. C. Greubel, Dec 28 2017
CROSSREFS
Cf. A190186.
Sequence in context: A009192 A013273 A013277 * A144549 A280992 A013270
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, May 05 2011
STATUS
approved