login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000580 a(n) = binomial coefficient C(n,7).
(Formerly M4517 N1911)
71
1, 8, 36, 120, 330, 792, 1716, 3432, 6435, 11440, 19448, 31824, 50388, 77520, 116280, 170544, 245157, 346104, 480700, 657800, 888030, 1184040, 1560780, 2035800, 2629575, 3365856, 4272048, 5379616, 6724520, 8347680, 10295472 (list; graph; refs; listen; history; text; internal format)
OFFSET
7,2
COMMENTS
Figurate numbers based on 7-dimensional regular simplex. According to Hyun Kwang Kim, it appears that every nonnegative integer can be represented as the sum of g = 15 of these numbers. - Jonathan Vos Post, Nov 28 2004
a(n) is the number of terms in the expansion of (Sum_{i=1..8} a_i)^n. - Sergio Falcon, Feb 12 2007
Product of seven consecutive numbers divided by 7!. - Artur Jasinski, Dec 02 2007
In this sequence there are no primes. - Artur Jasinski, Dec 02 2007
For a set of integers {1,2,...,n}, a(n) is the sum of the 2 smallest elements of each subset with 6 elements, which is 3*C(n+1,7) (for n>=6), hence a(n) = 3*C(n+1,7) = 3*A000580(n+1). - Serhat Bulut, Mar 13 2015
Partial sums of A000579. In general, the iterated sums S(m, n) = Sum_{j=1..n} S(m-1, j) with input S(1, n) = A000217(n) = 1 + 2 + ... + n are S(m, n) = risefac(n, m+1)/(m+1)! = binomial(n+m, m+1) = Sum_{k = 1..n} risefac(k, m)/m!, with the rising factorials risefac(x, m):= Product_{j=0..m-1} (x+j), for m >= 1. Such iterated sums of arithmetic progressions have been considered by Narayana Pandit (see The MacTutor History of Mathematics archive link, and the Gottwald et al. reference, p. 338, where the name Narayana Daivajna is also used). - Wolfdieter Lang, Mar 20 2015
a(n) = fallfac(n,7)/7! = binomial(n, 7) is also the number of independent components of an antisymmetric tensor of rank 7 and dimension n >= 7 (for n=1..6 this becomes 0). Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
From Juergen Will, Jan 02 2016: (Start)
Number of compositions (ordered partitions) of n+1 into exactly 8 parts.
Number of weak compositions (ordered weak partitions) of n-7 into exactly 8 parts. (End)
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
S. Gottwald, H.‐J. Ilgauds and K.‐H. Schlote (eds.), Lexikon bedeutender Mathematiker (in German), Bibliographisches Institut Leipzig, 1990.
J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Serhat Bulut and Oktay Erkan Temizkan, Subset Sum Problem, 2015
Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Philippe A. J. G. Chevalier, On the discrete geometry of physical quantities, Preprint, 2012.
Philippe A. J. G. Chevalier, A "table of Mendeleev" for physical quantities?, Slides from a talk, May 14 2014, Leuven, Belgium.
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., Vol. 131, No. 1 (2002), pp. 65-75.
P. A. MacMahon, Memoir on the Theory of the Compositions of Numbers, Phil. Trans. Royal Soc. London A, 184 (1893), 835-901. - Juergen Will, Jan 02 2016
Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
The MacTutor History of Mathematics archive, Narayana Pandit.
Eric Weisstein's World of Mathematics, Composition.
FORMULA
G.f.: x^7/(1-x)^8.
a(n) = (n^7 - 21*n^6 + 175*n^5 - 735*n^4 + 1624*n^3 - 1764*n^2 + 720*n)/5040.
a(n) = -A110555(n+1,7). - Reinhard Zumkeller, Jul 27 2005
Convolution of the nonnegative numbers (A001477) with the sequence A000579. Also convolution of the triangular numbers (A000217) with the sequence A000332. Also convolution of the sequence {1,1,1,1,...} (A000012) with the sequence A000579. Also self-convolution of the tetrahedral numbers (A000292). - Sergio Falcon, Feb 12 2007
a(n+4) = (1/3!)*(d^3/dx^3)S(n,x)|_{x=2}, n >= 3. One sixth of third derivative of Chebyshev S-polynomials evaluated at x=2. See A049310. - Wolfdieter Lang, Apr 04 2007
a(n) = n(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)/7!. - Artur Jasinski, Dec 02 2007, R. J. Mathar, Jul 07 2009
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) with a(7)=1, a(8)=8, a(9)=36, a(10)=120, a(11)=330, a(12)=792, a(13)=1716, a(14)=3432. - Harvey P. Dale, Nov 28 2011
a(n) = 3*C(n+1,7) = 3*A000580(n+1). - Serhat Bulut, Mar 13 2015
From Wolfdieter Lang, Mar 21 2015: (Start)
a(n) = A104712(n, 7), n >= 7.
a(n+6) = sum(A000579(j+5), j = 1..n), n >= 1. See the Mar 20 2015 comment above. (End)
Sum_{k >= 7} 1/a(k) = 7/6. - Tom Edgar, Sep 10 2015
Sum_{n>=7} (-1)^(n+1)/a(n) = A001787(7)*log(2) - A242091(7)/6! = 448*log(2) - 9289/30 = 0.8966035575... - Amiram Eldar, Dec 10 2020
EXAMPLE
For A={1,2,3,4,5,6,7}, subsets with 6 elements are {1,2,3,4,5,6}, {1,2,3,4,5,7}, {1,2,3,4,6,7}, {1,2,3,5,6,7}, {1,2,4,5,6,7}, {1,3,4,5,6,7}, {2,3,4,5,6,7}.
Sum of 2 smallest elements of each subset: a(7) = (1+2)+(1+2)+(1+2)+(1+2)+(1+2)+(1+3)+(2+3) = 24 = 3*C(7+1,7) = 3*A000580(7+1). - Serhat Bulut, Mar 13 2015
MAPLE
ZL := [S, {S=Prod(B, B, B, B, B, B, B, B), B=Set(Z, 1 <= card)}, unlabeled]: seq(combstruct[count](ZL, size=n), n=8..38); # Zerinvary Lajos, Mar 13 2007
A000580:=1/(z-1)**8; # Simon Plouffe in his 1992 dissertation, offset 0.
seq(binomial(n+7, 7)*1^n, n=0..30); # Zerinvary Lajos, Jun 23 2008
G(x):=x^7*exp(x): f[0]:=G(x): for n from 1 to 38 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n]/7!, n=7..37); # Zerinvary Lajos, Apr 05 2009
MATHEMATICA
Table[n(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)(n + 6)/7!, {n, 1, 100}] (* Artur Jasinski, Dec 02 2007 *)
Binomial[Range[7, 40], 7] (* or *) LinearRecurrence[ {8, -28, 56, -70, 56, -28, 8, -1}, {1, 8, 36, 120, 330, 792, 1716, 3432}, 40] (* Harvey P. Dale, Nov 28 2011 *)
CoefficientList[Series[1 / (1-x)^8, {x, 0, 33}], x] (* Vincenzo Librandi, Mar 21 2015 *)
PROG
(Magma) [Binomial(n, 7): n in [7..40]]; // Vincenzo Librandi, Mar 21 2015
(PARI) a(n)=binomial(n, 7) \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Sequence in context: A023033 A341205 A278971 * A290995 A229888 A243742
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Mar 17 2000
Some formulas that referred to other offsets corrected by R. J. Mathar, Jul 07 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 02:23 EDT 2024. Contains 371264 sequences. (Running on oeis4.)