login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000583 Fourth powers: a(n) = n^4.
(Formerly M5004 N2154)
119
0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, 14641, 20736, 28561, 38416, 50625, 65536, 83521, 104976, 130321, 160000, 194481, 234256, 279841, 331776, 390625, 456976, 531441, 614656, 707281, 810000, 923521, 1048576, 1185921 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Figurate numbers based on 4-dimensional regular convex polytope called the 4-measure polytope, 4-hypercube or tessaract with Schlaefli symbol {4,3,3}. - Michael J. Welch (mjw1(AT)ntlworld.com), Apr 01 2004

Sum(k>0, 1/a(k)) = Pi^4/90 = A013662. - Jaume Oliver Lafont, Sep 20 2009

Totally multiplicative sequence with a(p) = p^4 for prime p. - Jaroslav Krizek, Nov 01 2009

The binomial transform yields A058649. The inverse binomial transforms yields the (finite) 0, 1, 14, 36, 24, the 4th row in A019538 and A131689. - R. J. Mathar, Jan 16 2013

Generate Pythagorean triangles with parameters a and b to get sides of lengths x=b^2-a^2, y=2*a*b, and z=a^2 + b^2. In particular use a=n-1 and b=n for a triangle with sides (x1,y1,z1) and a=n and b=n+1 for another triangle with sides (x2,y2,z2). Then x1*x2 +y1*y2 +z1*z2 = 8*a(n). - J. M. Bergot, Jul 22 2013

For n > 0, a(n) is the largest integer k such that k^4 + n is a multiple of k + n. Also, for n > 0, a(n) is the largest integer k such that k^2 + n^2 is a multiple of k + n^2. - Derek Orr, Sep 04 2014

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

H. Bottomley, Illustration of initial terms

H. Bottomley, Some Smarandache-type multiplicative sequences

Ralph Greenberg, Math for Poets

Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets

Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Eric Weisstein's World of Mathematics, Biquadratic Number

Index entries for "core" sequences

Index to sequences with linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

a(n) = A123865(n)+1 = A002523(n)-1.

Multiplicative with a(p^e) = p^(4e). - David W. Wilson, Aug 01 2001

G.f.: x*(1+11*x+11*x^2+x^3)/(1-x)^5. More generally, g.f. for n^m is Euler(m, x)/(1-x)^(m+1), where Euler(m, x) is Eulerian polynomial of degree m (cf. A008292).

Dirichlet generating function: zeta(s-4). - Franklin T. Adams-Watters, Sep 11 2005

E.g.f.: (x+7x^2+6x^3+x^4)*e^x. More generally, the general form for the e.g.f. for n^m is phi_m(x)*e^x, where phi_m is the exponential polynomial of order n. - Franklin T. Adams-Watters, Sep 11 2005

a(n) = C(n+3,4) + 11*C(n+2,4) + 11*C(n+1,4) + C(n,4).

a(n) = n*A177342(n) - sum(i=1..n-1, A177342(i)) - (n-1), with n>1. - Bruno Berselli, May 07 2010

a(n) + a(n+1) + 1 = 2*A002061(n+1)^2. - Charlie Marion, Jun 13 2013

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 24. - Ant King, Sep 23 2013

MAPLE

A000583 := n->n^4: seq(A000583(n), n=0..50);

A000583:=-(z+1)*(z**2+10*z+1)/(z-1)**5; # Simon Plouffe in his 1992 dissertation; gives sequence without initial zero

with (combinat):seq(fibonacci(3, n^2)-1, n=0..33); # Zerinvary Lajos, May 25 2008

MATHEMATICA

Range[0, 100]^4 (* Vladimir Joseph Stephan Orlovsky, Mar 14 2011 *)

PROG

(PARI) A000583(n) = n^4 \\ Michael B. Porter, Nov 09 2009

(Haskell)

a000583 = (^ 4)  -- Reinhard Zumkeller, Nov 11 2012

(Maxima) makelist(n^4, n, 0, 30); /* Martin Ettl, Nov 12 2012 */

(MAGMA) [n^4 : n in [0..50]]; // Wesley Ivan Hurt, Sep 05 2014

CROSSREFS

Cf. A000538, A005917 (first differences), A000332, A014820, A092181, A092182, A092183.

Cf. A004831, A002646.

Sequence in context: A017672 A055013 A080150 * A050751 A014188 A050463

Adjacent sequences:  A000580 A000581 A000582 * A000584 A000585 A000586

KEYWORD

nonn,core,easy,nice,mult

AUTHOR

N. J. A. Sloane

EXTENSIONS

Broken link to Hyun Kwang Kim's paper fixed by Felix Fröhlich, Jun 16 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 24 19:48 EDT 2014. Contains 248516 sequences.