The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A104712 Pascal's triangle, with the first two columns removed. 19
 1, 3, 1, 6, 4, 1, 10, 10, 5, 1, 15, 20, 15, 6, 1, 21, 35, 35, 21, 7, 1, 28, 56, 70, 56, 28, 8, 1, 36, 84, 126, 126, 84, 36, 9, 1, 45, 120, 210, 252, 210, 120, 45, 10, 1, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1, 78, 286, 715 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS A000295 (Eulerian numbers) gives the row sums. Write A004736 and Pascal's triangle as infinite lower triangular matrices A and B; then A*B is this triangle. From Peter Luschny, Apr 10 2011: (Start) A slight variation has a combinatorial interpretation: remove the last column and the second one from Pascal's triangle. Let P(m, k) denote the set partitions of {1,2,..,n} with the following properties: (a) Each partition has at least one singleton block; (c) k is the size of the largest block of the partition; (b) m = n - k + 1 is the number of parts of the partition. Then A000295(n) = Sum_{k=1..n} card(P(n-k+1,k)). For instance, A000295(4) = P(4,1) + P(3,2) + P(2,3) + P(1,4) = card({1|2|3|4}) + card({1|2|34, 1|3|24,1|4|23, 2|3|14, 2|4|13, 3|4|12}) + card({1|234, 2|134, 3|124, 4|123}) = 1 + 6 + 4 = 11. This interpretation can be superimposed on the sequence by changing the offset to 1 and adding the value 1 in front. The triangle then starts   1   1,  3   1,  6,  4   1, 10, 10,  5   1, 15, 20, 15,  6 (End) Diagonal sums are A001924(n+1). - Philippe Deléham, Jan 11 2014 Relation to K-theory: T acting on the column vector (d,-d^2,d^3,...) generates the Euler classes for a hypersurface of degree d in CP^n. Cf. Dugger p. 168, A111492, A238363, and A135278. - Tom Copeland, Apr 11 2014 LINKS G. C. Greubel, Rows n=2..100 of triangle, flattened D. Dugger, A Geometric Introduction to K-Theory Candice A. Marshall, Construction of Pseudo-Involutions in the Riordan Group, Dissertation, Morgan State University, 2017. T. Saito, The discriminant and the determinant of a hypersurface of even dimension (p. 4), arXiv:1110.1717 [math.AG], 2011-2012. FORMULA a(n,k) = binomial(n,k), for 2 <= k <= n. From Peter Bala, Jul 16 2013: (Start) The following remarks assume an offset of 0. Riordan array (1/(1 - x)^3, x/(1 - x)). O.g.f.: 1/(1 - t)^2*1/(1 - (1 + x)*t) = 1 + (3 + x)*t + (6 + 4*x + x^2)*t^2 + .... E.g.f.: (1/x*d/dt)^2 (exp(t)*(exp(x*t) - 1 - x*t) = 1 + (3 + x)*t + (6 + 4*x + x^2)*t^2/2! + .... The infinitesimal generator for this triangle has the sequence [3,4,5,...] on the main subdiagonal and 0's elsewhere. (End) As triangle T(n,k), 0<=k<=n: T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k) - 2*T(n-2,k-1) + T(n-3,k) + T(n-3,k-1), T(0,0)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Jan 11 2014 From Tom Copeland, Apr 11 2014: (Start) A) The infinitesimal generator for this matrix is given in A132681 with m=2. See that entry for numerous relations to differential operators and the Laguerre polynomials of order m=2, i.e., Lag(n,t,2) = Sum_{j=0..n} binomial(n+2,n-j)*(-t)^j/j!. B) O.g.f.: 1 / { [ 1 - t * x/(1-x) ] * (1-x)^3 } C) O.g.f of row e.g.f.s: exp[t*x/(1-x)]/(1-x)^3 = [sum(n=0,1,...) x^n * Lag(n,-t,2)]= 1+ (3+t)*x+ (6+4t+t^2/2!)*x^2+ (10+10t+5t^2/2!+t^3/3!)*x^3 + .... D) E.g.f. of row o.g.f.s: [(1+t)*exp((1+t)*x)-(1+t+t*x)exp(x)]/t^2. (End) O.g.f. for m-th row (m=n-2): [(1+x)^(m+2)-(1+(m+2)*x)]/x^2. - Tom Copeland, Apr 16 2014 Reverse T = [St2]*dP*[St1]- dP = [St2]*(exp(x*M)-I)*[St1]-(exp(x*M)-I) with top two rows of zeros removed, [St1]=padded A008275 just as [St2]=A048993=padded A008277, dP= A132440, M=A238385-I, and I=identity matrix. Cf. A238363. - Tom Copeland, Apr 26 2014 O.g.f. of column k (with k leading zeros): (x^k)/(1-x)^(k+1), k >= 2. - Wolfdieter Lang, Mar 20 2015 EXAMPLE The triangle a(n, k) begins: n\k  2   3   4    5    6    7    8   9  10 11 12 13 2:   1 3:   3   1 4:   6   4   1 5:  10  10   5    1 6:  15  20  15    6    1 7:  21  35  35   21    7    1 8:  28  56  70   56   28    8    1 9:  36  84 126  126   84   36    9   1 10: 45 120 210  252  210  120   45  10   1 11: 55 165 330  462  462  330  165  55  11  1 12: 66 220 495  792  924  792  495 220  66 12  1 13: 78 286 715 1287 1716 1716 1287 715 286 78 13  1 ... reformatted. - Wolfdieter Lang, Mar 20 2015 MATHEMATICA t[n_, k_] := Binomial[n, k]; Table[ t[n, k], {n, 2, 13}, {k, 2, n}] // Flatten (* Robert G. Wilson v, Apr 16 2011 *) PROG (PARI) for(n=2, 10, for(k=2, n, print1(binomial(n, k), ", "))) \\ G. C. Greubel, May 15 2018 (MAGMA) /* As triangle */ [[Binomial(n, k): k in [2..n]]: n in [2..10]]; // G. C. Greubel, May 15 2018 CROSSREFS Cf. A000295, A007318, A008292, A104713, A027641/A027642 (first Bernoulli numbers B-), A164555/A027642 (second Bernoulli numbers B+), A176327/A176289. Sequence in context: A185915 A086270 A325000 * A122177 A255874 A108286 Adjacent sequences:  A104709 A104710 A104711 * A104713 A104714 A104715 KEYWORD nonn,tabl,easy AUTHOR Gary W. Adamson, Mar 19 2005 EXTENSIONS Edited and extended by David Wasserman, Jul 03 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 04:49 EDT 2021. Contains 343030 sequences. (Running on oeis4.)