OFFSET
0,2
COMMENTS
Sum of root degrees of all noncrossing trees on nodes on a circle. - Emeric Deutsch
REFERENCES
H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..200
Emanuele Munarini, Shifting Property for Riordan, Sheffer and Connection Constants Matrices, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2.
Joris Nieuwveld, Fractions, Functions and Folding. A Novel Link between Continued Fractions, Mahler Functions and Paper Folding, Master's Thesis, arXiv:2108.11382 [math.NT], 2021.
C. H. Pah, Single polygon counting on Cayley Tree of order 3, J. Stat. Phys. 140 (2010) 198-207.
FORMULA
a(n) = 2*binomial(3*n+3,n)/(n+2). - Emeric Deutsch
a(n) = (n+1) * A000139(n+1). - F. Chapoton, Feb 23 2024
G.f.: 3_F_2 ( [ 2, 5/3, 4/3 ]; [ 3, 5/2 ]; 27 x / 4 ).
G.f.: A(x) = G(x)^4 where G(x) = 1 + x*G(x)^3 = g.f. of A001764 giving a(n)=C(3n+m-1,n)*m/(2n+m) at power m=4 with offset n=0. - Paul D. Hanna, May 10 2008
G.f.: (((4*sin(arcsin((3*sqrt(3*x))/2)/3))/(sqrt(3*x))-1)^2-1)/(4*x). - Vladimir Kruchinin, Feb 17 2023
PROG
(PARI) a(n)=my(m=4); binomial(3*n+m-1, n)*m/(2*n+m) /* 4th power of A001764 with offset n=0 */ \\ Paul D. Hanna, May 10 2008
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More precise definition from Paul D. Hanna, May 10 2008
STATUS
approved