login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006629
Self-convolution 4th power of A001764, which enumerates ternary trees.
(Formerly M3542)
23
1, 4, 18, 88, 455, 2448, 13566, 76912, 444015, 2601300, 15426840, 92431584, 558685348, 3402497504, 20858916870, 128618832864, 797168807855, 4963511449260, 31032552351570, 194743066471800, 1226232861415695
OFFSET
0,2
COMMENTS
Sum of root degrees of all noncrossing trees on nodes on a circle. - Emeric Deutsch
REFERENCES
H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Emanuele Munarini, Shifting Property for Riordan, Sheffer and Connection Constants Matrices, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2.
C. H. Pah, Single polygon counting on Cayley Tree of order 3, J. Stat. Phys. 140 (2010) 198-207.
FORMULA
a(n) = 2*binomial(3*n+3,n)/(n+2). - Emeric Deutsch
a(n) = (n+1) * A000139(n+1). - F. Chapoton, Feb 23 2024
G.f.: 3_F_2 ( [ 2, 5/3, 4/3 ]; [ 3, 5/2 ]; 27 x / 4 ).
G.f.: A(x) = G(x)^4 where G(x) = 1 + x*G(x)^3 = g.f. of A001764 giving a(n)=C(3n+m-1,n)*m/(2n+m) at power m=4 with offset n=0. - Paul D. Hanna, May 10 2008
G.f.: (((4*sin(arcsin((3*sqrt(3*x))/2)/3))/(sqrt(3*x))-1)^2-1)/(4*x). - Vladimir Kruchinin, Feb 17 2023
PROG
(PARI) a(n)=my(m=4); binomial(3*n+m-1, n)*m/(2*n+m) /* 4th power of A001764 with offset n=0 */ \\ Paul D. Hanna, May 10 2008
CROSSREFS
Column 2 of A092276.
Cf. A000139.
Sequence in context: A081671 A244785 A260650 * A068764 A127394 A046984
KEYWORD
nonn,easy
EXTENSIONS
More precise definition from Paul D. Hanna, May 10 2008
STATUS
approved