login
A349239
a(n) = n + (reversal of digits in the Zeckendorf representation of n).
5
0, 2, 3, 4, 8, 6, 12, 11, 9, 18, 16, 15, 24, 14, 28, 24, 22, 36, 22, 36, 32, 22, 44, 37, 33, 55, 32, 54, 47, 33, 55, 48, 44, 66, 35, 70, 58, 51, 86, 48, 83, 71, 48, 83, 71, 64, 99, 51, 86, 74, 67, 102, 64, 99, 87, 56, 112, 92, 80, 136, 74, 130, 110, 72, 128, 108
OFFSET
0,2
LINKS
FORMULA
a(n) = n + A349238(n).
a(n) = 2*n - A349240(n).
PROG
(PARI) See links.
(Python) # Using functions NumToFib and RevFibToNum from A349238.
n, a = 0, 0
print(a + a, end = ", ")
while n < 65:
n += 1
print(n + RevFibToNum(NumToFib(n)), end = ", ") # A.H.M. Smeets, Nov 14 2021
CROSSREFS
Cf. A189920 (Zeckendorf digits), A349238 (reverse), A349240 (reverse and subtract), A348570 (Lychrels).
Other bases: A055944 (binary), A056964 (decimal).
Sequence in context: A223540 A364138 A300868 * A176077 A332778 A263694
KEYWORD
base,easy,nonn
AUTHOR
Kevin Ryde, Nov 11 2021
STATUS
approved