This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A211978 Total number of parts in all partitions of n plus the sum of largest parts of all partitions of n. 19
 0, 2, 6, 12, 24, 40, 70, 108, 172, 256, 384, 550, 798, 1112, 1560, 2136, 2926, 3930, 5288, 6996, 9260, 12104, 15798, 20412, 26348, 33702, 43044, 54588, 69090, 86906, 109126, 136270, 169854, 210732, 260924, 321752, 396028, 485624, 594402, 725174, 883092, 1072208 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also twice A006128, because the total number of parts in all partitions of n equals the sum of largest parts of all partitions of n. For a proof without words see the illustration of initial terms. Note that the sum of the lengths of all horizontal segments equals the sum of largest parts of all partitions of n. On the other hand, the sum of the lengths of all vertical segments equals the total number of parts of all partition of n. Therefore the sum of lengths of all horizontal segments equals the sum of lengths of all vertical segments. a(n) is also the sum of the semiperimeters of the Ferrers boards of the partitions of n. Example: a(2)=6; indeed, the Ferrers boards of the partitions  and [1,1] of 2 are 2x1 rectangles; the sum of their semiperimeters is 3 + 3 = 6. - Emeric Deutsch, Oct 07 2016 a(n) is also the sum of the semiperimeters of the regions of the set of partitions of n. See the first illustration in the Example section. For more information see A278355. - Omar E. Pol, Nov 23 2016 LINKS Omar E. Pol, Visualization of regions in a diagram for A006128 N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS FORMULA a(n) = 2*A006128(n). a(n) = A225600(2*A000041(n)) = A225600(A139582(n)), n >= 1. a(n) = (Sum_{m=1..p(n)} A194446(m)) + (Sum_{m=1..p(n)} A141285(m)) = 2*Sum_{m=1..p(n)} A194446(m) = 2*Sum_{m=1..p(n)} A141285(m), where p(n) = A000041(n), n >= 1. The trivariate g.f. G(t,s,x) of the partitions of a nonnegative integer relative to weight (marked by x), number of parts (marked by t), and largest part (marked by s) is G(t,s,x) = Sum_{i>=1} t*s^i*x^i/product_{j=1..i} (1-tx^j). Setting s = t, we obtain the bivariate g.f. of the partitions relative to weight (marked by x) and semiperimeter of the Ferrers board (marked by t). The g.f. of a(n) is g(x) = Sum_{i>=1} ((x^i*(1 + i + Q(x))/R(x)), where Q(x) = sum_{j=1..i} (x^j/(1 - x^j)) and R(x) = product_{j=1..i}(1-x^j). g(x) has been obtained by setting t = 1 in dG(t,t,x))/dt. - Emeric Deutsch, Oct 07 2016 EXAMPLE Illustration of initial terms as a minimalist diagram of regions of the set of partitions of n, for n = 1..6: .                                         _ _ _ _ _ _ .                                         _ _ _      | .                                         _ _ _|_    | .                                         _ _    |   | .                             _ _ _ _ _   _ _|_ _|_  | .                             _ _ _    |  _ _ _    | | .                   _ _ _ _   _ _ _|_  |  _ _ _|_  | | .                   _ _    |  _ _    | |  _ _    | | | .           _ _ _   _ _|_  |  _ _|_  | |  _ _|_  | | | .     _ _   _ _  |  _ _  | |  _ _  | | |  _ _  | | | | . _   _  |  _  | |  _  | | |  _  | | | |  _  | | | | | .  |   | |   | | |   | | | |   | | | | |   | | | | | | . . 2    6     12        24         40          70 . Also using the elements from the diagram we can draw an infinite Dyck path in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps. Note that the n-th largest peak between two valleys at height 0 is also the partition number A000041(n) as shown below: . 11........................................................... .                                                           /\ .                                                          /  \ .                                                         /    \ 7..................................                      /      \ .                                 /\                    /        \ 5....................            /  \                /\/          \ .                   /\          /    \          /\  /              \ 3..........        /  \        /      \        /  \/                \ 2.....    /\      /    \    /\/        \      /                      \ 1..  /\  /  \  /\/      \  /            \  /\/                        \ 0 /\/  \/    \/          \/              \/                            \ . 0,2,  6,   12,         24,             40,                          70... . MAPLE Q := sum(x^j/(1-x^j), j = 1 .. i): R := product(1-x^j, j = 1 .. i): g := sum(x^i*(1+i+Q)/R, i = 1 .. 100): gser := series(g, x = 0, 50): seq(coeff(gser, x, n), n = 0 .. 41); # Emeric Deutsch, Oct 07 2016 CROSSREFS Cf. A139582 is twice A000041. A220909 is twice A066186. Cf. A006128, A135010, A141285, A186114, A193870, A187219, A194446, A194447, A206437, A211026, A220517, A225600, A278355. Sequence in context: A306625 A262986 A307559 * A028923 A187272 A001116 Adjacent sequences:  A211975 A211976 A211977 * A211979 A211980 A211981 KEYWORD nonn AUTHOR Omar E. Pol, Jan 03 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 04:25 EDT 2019. Contains 323528 sequences. (Running on oeis4.)