OFFSET
-2,2
COMMENTS
a(n) = (m^2 - 6*m + 17)*m/6 where m = n+2. - Frank Ellermann
LINKS
Harry J. Smith, Table of n, a(n) for n = -2..1000
Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
It appears that a(n) = A011826(n+1) + 1.
a(n) = n + 2 + binomial(n,3) (with different offset). - Zerinvary Lajos, Jul 23 2006
G.f.: (2 - 5*x + 4*x^2)/(x*(1 - x)^4). - Stefano Spezia, Nov 19 2023
MAPLE
seq((n^3 + 5*n + 18)/6, n=-2..46); # Zerinvary Lajos, Jul 23 2006
MATHEMATICA
a=2; s=3; lst={-3, -1, 0, 1, s}; Do[a+=n; s+=a; AppendTo[lst, s], {n, 2, 6!, 1}]; lst+3 (* Vladimir Joseph Stephan Orlovsky, May 24 2009 *)
Table[(n^3+5n+18)/6, {n, -2, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 2, 3, 4}, 50] (* Harvey P. Dale, Mar 11 2015 *)
PROG
(PARI) { for (n=-2, 1000, write("b060163.txt", n, " ", (n^3 + 5*n + 18)/6); ) } \\ Harry J. Smith, Jul 02 2009
(Magma) [(n^3+5*n+18)/6 : n in [-2..50]]; // Wesley Ivan Hurt, Mar 25 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Mar 13 2001
STATUS
approved