login
A060163
a(n) = (n^3 + 5*n + 18)/6.
2
0, 2, 3, 4, 6, 10, 17, 28, 44, 66, 95, 132, 178, 234, 301, 380, 472, 578, 699, 836, 990, 1162, 1353, 1564, 1796, 2050, 2327, 2628, 2954, 3306, 3685, 4092, 4528, 4994, 5491, 6020, 6582, 7178, 7809, 8476, 9180, 9922, 10703, 11524, 12386, 13290, 14237
OFFSET
-2,2
COMMENTS
a(n) = (m^2 - 6*m + 17)*m/6 where m = n+2. - Frank Ellermann
LINKS
Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
FORMULA
a(n) = a(n-1) + A000124(n-1) = A060162(n+3, n) = A004006(n)+3 = A000125(n) + 2.
It appears that a(n) = A011826(n+1) + 1.
a(n) = n + 2 + binomial(n,3) (with different offset). - Zerinvary Lajos, Jul 23 2006
G.f.: (2 - 5*x + 4*x^2)/(x*(1 - x)^4). - Stefano Spezia, Nov 19 2023
MAPLE
seq((n^3 + 5*n + 18)/6, n=-2..46); # Zerinvary Lajos, Jul 23 2006
MATHEMATICA
a=2; s=3; lst={-3, -1, 0, 1, s}; Do[a+=n; s+=a; AppendTo[lst, s], {n, 2, 6!, 1}]; lst+3 (* Vladimir Joseph Stephan Orlovsky, May 24 2009 *)
Table[(n^3+5n+18)/6, {n, -2, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 2, 3, 4}, 50] (* Harvey P. Dale, Mar 11 2015 *)
PROG
(PARI) { for (n=-2, 1000, write("b060163.txt", n, " ", (n^3 + 5*n + 18)/6); ) } \\ Harry J. Smith, Jul 02 2009
(Magma) [(n^3+5*n+18)/6 : n in [-2..50]]; // Wesley Ivan Hurt, Mar 25 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Mar 13 2001
STATUS
approved