login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024490 a(n) = C(n-1,1) + C(n-3,3) + ... + C(n-2*m-1,2*m+1), where m = floor((n-2)/4). 12
1, 2, 3, 4, 6, 10, 17, 28, 45, 72, 116, 188, 305, 494, 799, 1292, 2090, 3382, 5473, 8856, 14329, 23184, 37512, 60696, 98209, 158906, 257115, 416020, 673134, 1089154, 1762289, 2851444, 4613733, 7465176, 12078908, 19544084, 31622993, 51167078, 82790071 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

Essentially both the first difference sequence and partial sum of A005252, so its own shifted second difference and indeed virtually the same as A005252, so close to being its own shifted first difference.

From Paul Curtz, Jun 22 2011: (Start)

b(n)=0,0,0,1,2,3,4,6, and differences are

0,  0,  0,  1, 2,  3, 4, 6,

0,  0,  1,  1, 1,  1, 2, 4,

0,  1,  0,  0, 0,  1, 2, 3,

1, -1,  0,  0, 1 , 1, 1, 1,

-2, 1,  0,  1, O,  0, 0, 1,

3, -1,  1  -1, 0,  0, 1, 1,

-4, 2, -2,  1, 0,  1, 0, 0,

6, -4,  3, -1, 1, -1, 0, 0;

b(n) is an autosequence (sequence identical to its inverse binomial transform signed) of first kind i.e. its main diagonal is A000004.

Examples:A000045, A001045, A113405, A191754 (array). (End)

a(n) = number of vertices of the Fibonacci cube Gamma(n-1) having an odd  number of ones. The Fibonacci cube Gamma(n) can be defined as the graph whose vertices are the binary strings of length n without two consecutive 1's and in which two vertices are adjacent when their Hamming distance is exactly 1. Example: a(4) = 3; indeed, the Fibonacci cube Gamma(3) has the five vertices 000, 010, 001, 100, 101, three of which have an odd number of ones. See the E. Munarini et al. reference, p. 323. - Emeric Deutsch, Jun 28 2015

a(n) is the number of odd permutations p of 1,2,..,n such that |p(i)-i|<=1 for i=1,2,..,n. - Dmitry Efimov, Jan 08 2016

LINKS

T. D. Noe, Table of n, a(n) for n=2..502

Shishuo Fu, Dazhao Tang, Partitions with fixed largest hook length, arXiv:1604.04028 [math.CO], 2016.

Fumio Hazama, Spectra of graphs attached to the space of melodies, Discr. Math., 311 (2011), 2368-2383. See Table 2.1.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 886

S. Klavzar, Structure of Fibonacci cubes: a survey, J. Comb. Optim., 25, 2013, 505-522.

E. Munarini, N. Z. Salvi, Structural and enumerative properties of the Fibonacci cubes, Discrete Math., 255, 2002, 317-324.

Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 1).

FORMULA

a(n) = A000045(n+1) - A005252(n).

a(n) = (A000045(n+1) - A010892(n))/2. - Mario Catalani (mario.catalani(AT)unito.it), Jan 08 2003

a(n) = sum{k=0..n} Fib(k+1)*2*sin(Pi*(n-k)/3+Pi/3)/sqrt(3). - Paul Barry, May 18 2004

G.f.: -x^2/((x^2+x-1)(x^2-x+1)). - Jon Perry, Jun 22 2004

a(n) = sum{k=0..floor(n/2), C(n-k+1,k+1)*(1+(-1)^k)/2}. - Paul Barry, Jul 05 2007

G.f.: (1+ Q(0)*x^4/2)/(1-x)^2, where Q(k) = 1 + 1/(1 - x*( 4*k+2 -x +x^3)/( x*( 4*k+4 -x +x^3) +1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 07 2014

MATHEMATICA

LinearRecurrence[{2, -1, 0, 1}, {1, 2, 3, 4}, 39] (* Ray Chandler, Sep 23 2015 *)

CoefficientList[Series[-1 / ((x^2 + x - 1) (x^2 - x + 1)), {x, 0, 40}], x] ( *Vincenzo Librandi, Jan 09 2016 *)

PROG

(MAGMA) I:=[1, 2, 3, 4]; [n le 4 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 09 2016

(PARI) Vec(-x^2/((x^2+x-1)*(x^2-x+1)) + O(x^50)) \\ Michel Marcus, Feb 03 2016

CROSSREFS

Cf. A010892, A005252.

Sequence in context: A026502 A060163 A106511 * A056469 A228863 A004047

Adjacent sequences:  A024487 A024488 A024489 * A024491 A024492 A024493

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling

EXTENSIONS

Additional comments from Henry Bottomley, Apr 07 2000

Corrected by Mario Catalani (mario.catalani(AT)unito.it), Jan 08 2003

Further corrections from Hugo van der Sanden, Oct 05 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 21 07:18 EST 2018. Contains 299390 sequences. (Running on oeis4.)