login
A017901
Expansion of 1/(1 - x^7 - x^8 - ...).
3
1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 28, 35, 43, 53, 66, 83, 105, 133, 168, 211, 264, 330, 413, 518, 651, 819, 1030, 1294, 1624, 2037, 2555, 3206, 4025, 5055, 6349, 7973, 10010, 12565, 15771, 19796, 24851, 31200, 39173
OFFSET
0,15
COMMENTS
A Lamé sequence of higher order.
a(n) = number of compositions of n in which each part is >= 7. - Milan Janjic, Jun 28 2010
a(n+7) equals the number of n-length binary words such that 0 appears only in a run length that is a multiple of 7. - Milan Janjic, Feb 17 2015
A017847(n) = |a(-n)| for n>=0. - Michael Somos, Oct 28 2018
LINKS
I. M. Gessel, Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013) 13.4.5
J. Hermes, Anzahl der Zerlegungen einer ganzen rationalen Zahl in Summanden, Math. Ann., 45 (1894), 371-380.
Augustine O. Munagi, Integer Compositions and Higher-Order Conjugation, J. Int. Seq., Vol. 21 (2018), Article 18.8.5.
FORMULA
G.f.: (x-1)/(x-1+x^7). - Alois P. Heinz, Aug 04 2008
For positive integers n and k such that k <= n <= 7*k, and 6 divides n-k, define c(n,k) = binomial(k,(n-k)/6), and c(n,k) = 0, otherwise. Then, for n>=1, a(n+7) = sum(c(n,k), k=1..n). - Milan Janjic, Dec 09 2011
a(n) = A005709(n) - A005709(n-1). - R. J. Mathar, Sep 07 2016
0 == a(n) + a(n+6) - a(n+7) for all n in Z. - Michael Somos, Oct 28 2018
EXAMPLE
G.f. = 1 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + 2*x^14 + ... - Michael Somos, Oct 28 2018
MAPLE
f := proc(r) local t1, i; t1 := []; for i from 1 to r do t1 := [op(t1), 0]; od: for i from 1 to r+1 do t1 := [op(t1), 1]; od: for i from 2*r+2 to 50 do t1 := [op(t1), t1[i-1]+t1[i-1-r]]; od: t1; end; # set r = order
a := n -> (Matrix(7, (i, j)-> if (i=j-1) then 1 elif j=1 then [1, 0$5, 1][i] else 0 fi)^n)[7, 7]: seq(a(n), n=0..50); # Alois P. Heinz, Aug 04 2008
MATHEMATICA
LinearRecurrence[{1, 0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, 0}, 60] (* Jean-François Alcover, Mar 28 2017 *)
PROG
(PARI) Vec((x-1)/(x-1+x^7)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(PARI) {a(n) = if( n < 0, polcoeff( 1 / (1 + x^6 - x^7) + x * O(x^-n), -n), polcoeff( (1 - x) / (1 - x - x^7) + x * O(x^n), n))}; /* Michael Somos, Oct 28 2018 */
CROSSREFS
For Lamé sequences of orders 1 through 9 see A000045, A000930, A017898, A017899, A017900, A017901, A017902, A017903, A017904.
Sequence in context: A363149 A236310 A005709 * A101917 A322854 A322802
KEYWORD
nonn,easy
STATUS
approved