This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002687 Numerators of coefficients for repeated integration. (Formerly M4457 N1887) 2
 1, -1, 1, -7, 107, -199, 6031, -5741, 1129981, -435569, 35661419, -1523489833, 45183033541, -12597680311, 19055094997949, -9331210633373, 104148936040729, -2250170748719203, 734854328394419537, -826511503463860961 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Michael De Vlieger, Table of n, a(n) for n = 1..446 Caroline MoosmÃ¼ller, Tomas Sauer, Polynomial overreproduction by Hermite subdivision operators, and p-Cauchy numbers, arXiv:1904.10835 [math.NA], 2019. H. E. Salzer, Table of coefficients for repeated integration with differences, Phil. Mag., 38 (1947), 331-336. H. E. Salzer, Table of coefficients for repeated integration with differences, Phil. Mag., 38 (1947), 331-336. [Annotated scanned copy] FORMULA a(n) = numerator(1/n!*(Sum_{k=1..n}((stirling1(n,k))/((k+1)*(k+2))))). - Vladimir Kruchinin, Apr 06 2016 MAPLE seq(numer(int(int(mul(p-i, i=0..(n-1)), p=0..p), p=0..1)/n!), n=1..30); MATHEMATICA Table[Numerator@ (Sum[StirlingS1[n, k]/((k + 1) (k + 2)), {k, n}]/n!), {n, 20}] (* Michael De Vlieger, Apr 06 2016 *) PROG (Maxima) a(n):=num(1/n!*(sum((stirling1(n, k))/((k+1)*(k+2)), k, 1, n))); /* Vladimir Kruchinin, Apr 06 2016 */ CROSSREFS Cf. A002688. Sequence in context: A075021 A138963 A141932 * A166547 A156204 A231519 Adjacent sequences:  A002684 A002685 A002686 * A002688 A002689 A002690 KEYWORD sign,frac AUTHOR EXTENSIONS Corrected and edited by Herman Jamke (hermanjamke(AT)fastmail.fm), Aug 01 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 17:39 EDT 2019. Contains 328319 sequences. (Running on oeis4.)