login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002687
Numerators of coefficients for repeated integration.
(Formerly M4457 N1887)
2
1, -1, 1, -7, 107, -199, 6031, -5741, 1129981, -435569, 35661419, -1523489833, 45183033541, -12597680311, 19055094997949, -9331210633373, 104148936040729, -2250170748719203, 734854328394419537, -826511503463860961
OFFSET
1,4
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Caroline Moosmüller and Tomas Sauer, Polynomial overreproduction by Hermite subdivision operators, and p-Cauchy numbers, arXiv:1904.10835 [math.NA], 2019.
H. E. Salzer, Table of coefficients for repeated integration with differences, Phil. Mag., 38 (1947), 331-336.
H. E. Salzer, Table of coefficients for repeated integration with differences, Phil. Mag., 38 (1947), 331-336. [Annotated scanned copy]
FORMULA
a(n) = numerator((1/n!) * Sum_{k=1..n} Stirling1(n,k)/((k+1)*(k+2))). - Vladimir Kruchinin, Apr 06 2016
MAPLE
seq(numer(int(int(mul(p-i, i=0..(n-1)), p=0..p), p=0..1)/n!), n=1..30);
MATHEMATICA
Table[Numerator@ (Sum[StirlingS1[n, k]/((k + 1) (k + 2)), {k, n}]/n!), {n, 20}] (* Michael De Vlieger, Apr 06 2016 *)
PROG
(Maxima)
a(n):=num(1/n!*(sum((stirling1(n, k))/((k+1)*(k+2)), k, 1, n))); /* Vladimir Kruchinin, Apr 06 2016 */
CROSSREFS
Cf. A002688.
Sequence in context: A075021 A138963 A141932 * A354572 A166547 A156204
KEYWORD
sign,frac
EXTENSIONS
Corrected and edited by Herman Jamke (hermanjamke(AT)fastmail.fm), Aug 01 2010
STATUS
approved