This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002689 Denominators of coefficients for repeated integration. (Formerly M4072 N1687) 5
 2, 6, 8, 180, 32, 10080, 3456, 453600, 115200, 47900160, 71680, 217945728000, 36578304000, 2241727488000, 45984153600, 2000741783040000, 918421504, 43667471941632000, 5751865147392000, 240857298809487360000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 H. E. Salzer, Table of coefficients for repeated integration with differences, Phil. Mag., 38 (1947), 331-336. H. E. Salzer, Table of coefficients for repeated integration with differences,  Phil. Mag., 38 (1947), 331-336. [Annotated scanned copy] FORMULA a(n) = A002207(n)/(n+1). MAPLE seq(denom(int(mul(p-i, i=0..(n-1)), p=0..1)/(n-1)!), n=1..30); MATHEMATICA max = 19; a[n_] := Denominator[Sum[BernoulliB[j]/j*StirlingS1[n, j-1], {j, 1, n+1}]*(n+1)/n!]; Table[a[n], {n, 0, max}] (* or *) a[n_] := Denominator[SeriesCoefficient[1/x - 1/Log[1+x], {x, 0, n}]] /(n+1); Table[a[n], {n, 0, max}] (* Jean-François Alcover, Apr 09 2014, after Paul Curtz *) CROSSREFS Sequence in context: A124675 A279258 A120709 * A174727 A046728 A110984 Adjacent sequences:  A002686 A002687 A002688 * A002690 A002691 A002692 KEYWORD nonn,frac AUTHOR EXTENSIONS Corrected and edited by Herman Jamke (hermanjamke(AT)fastmail.fm), Aug 01 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 26 18:36 EDT 2019. Contains 321511 sequences. (Running on oeis4.)